Skip to main content

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 2))

  • 66 Accesses

Abstract

Until two decades ago, chemical transmission from autonomic innervation to vascular effector tissues was thought to be mediated mainly by norepinephrine and acetylcholine. However, it was noted that despite pharmacological blockade of adrenergic receptors, electrical stimulation of sympathetic nerves still evoked residual vasoconstriction in several vascular beds in experimental animals (Folkow and Uvnas,1948 Lundberg and Tatemoto,1982). Direct evidence from examining neuroeffector transmission in isolated vascular preparations using in vitro tissue bath techniques has indicated that contraction and relaxation of isolated blood vessels upon field electrical stimulation of the intramural nerves persist in the presence of adrenoceptor and muscarinic receptor antagonists (Lee and Bevan, 1974 Lee et al., 1975 Lee and Bevan, 1976 Lee and Bevan, 1978 Lee and Bevan, 1980 Von Kugelgen and Starke, 1985 Burnstock and Kennedy, 1986 Morris and Murphy, 1988). These findings, particularly those from in vitro studies using isolated preparations, have led to the evolution of new paradigms for neuroeffector communication in which norepinephrine and acetylcholine are not the respective primary vasoconstrictor and dilator transmitters, for example, in cerebral vascular beds, and a second transmitter substance from each type of nerve is predominant in mediating vasoconstriction and dilation (Lee and Bevan, 1974 Lee et al., 1975 Lee,1986). Accruing evidence has now clearly indicated that several substances other than norepinephrine and acetylcholine are involved in autonomic neurotransmission in various vascular beds (Burnstock, 1972 Su and Lee, 1976; Lee, 1994). Foremost among this has been the discovery of nitric oxide (NO) as a cellular messenger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addicks, K., Bloch, W., and Feelisch, M. 1994. Nitric oxide modulates sympathetic neurotransmission at the prejunctional level. Microsc. Res. Tech. 29:161–168.

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia, A., and Cellek, S. 1997. Regulation of the cardiovascular system by non-adrenergic, non-cholinergic nerves. Curr. Opin. NephroL Hypertens. 6:74–79.

    Article  PubMed  CAS  Google Scholar 

  • Amenta, E, Cavalloti, C., Ferrante, F., and Tonelli, F. 1983. Cholinergic innervation of the human pulmonary circulation. Acta. Anat. (Basel) 117:58–64.

    Article  Google Scholar 

  • Andersson, K.E., and Persson, K. 1993. The L-arginine/nitric oxide pathway and NANC relaxation of the lower urinary tract. Gen. Pharmacol 24:833–839.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, K.E., and Stief, C.G. 1997. Neurotransmission and the contraction and relaxation of penile erectile tissues. World J. Urol. 15:14–20.

    Article  PubMed  Google Scholar 

  • Ando, K. 1998. Nitrergic innervation of the cerebral arterial tree in the bent-winged bat. J. Comp. Neurol. 390:366–376.

    Article  PubMed  CAS  Google Scholar 

  • Asada, Y., Yu, J.G., and Lee, T.J.-F. 1997. Myo-endothelial junctions in endothelium-dependent vasodilation. Cell Vision 4:308–317.

    Google Scholar 

  • Ayajiki, K., Okamura, T., and Toda, N. 1994. Neurogenic relaxations caused by nicotine in isolated cat middle cerebral arteries. J. Pharmacol Exp. Ther. 270:795–801.

    PubMed  CAS  Google Scholar 

  • Bachmann, S., Bosse, H.M., and Mundel, P. 1995. Topography of nitric oxide synthesis by localising constitutive NO synthases in mammalian kidney. Am. J. PhysioL 268:F885–F898.

    PubMed  CAS  Google Scholar 

  • Belvisi, M.G., Miura, M., Stretton, D., and Barnes, P.J. 1993. Endogenous vasoactive intestinal polypeptide and nitric oxide modulate cholinergic neurotransmission in guinea-pig trachea. Eur. J. Pharmacol. 231:97–102.

    Article  PubMed  CAS  Google Scholar 

  • Boeckstaens, G.E., Pelckmans, P.A., Rampart, M., Verbeuren, T.J., Herman, A.G., and Van Maercke, Y.M. 1991. NANC mechanisms in the ileocolonic junction. Arch. Int. Pharmacodyn. Ther. 303:270–281.

    Google Scholar 

  • Bredt, D.S., Hwang, P.M., and Snyder, S.H. 1990. Localisation of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  PubMed  CAS  Google Scholar 

  • Burnett, A.L., Tillman, S.L., Chang, T.S., Epstein, J.L., Lowenstein, C.J., Bredt, D.S., Snyder, S.H., and Walsh, P.C. 1993 Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J. Urol. 50:73–76

    Google Scholar 

  • Burnstock, G. 1972. Purinergic nerves. Pharmacol. Rev. 24:509–560.

    PubMed  CAS  Google Scholar 

  • Burnstock, G., and Kennedy, C. 1986. A dual function for adenosine 5’triphosphate in the regulation of vascular tone: excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ. Res. 58:319–330.

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli, S., Lundberg, J.M., Fahrenkrug, J., Bredt, D.S., Snyder, S.H., and Hokflet, T. 1992. Evidence for involvement of nitric oxide in the regulation of hypothalamic portal blood flow. Neuroscience 51:769–772.

    Article  PubMed  CAS  Google Scholar 

  • Cederqvist, B., Wiklund, N.P, Persson, M.G., and Gustafsson, L.E. 1991. Modulation of neuroeffector transmission in the guinea-pig pulmonary artery by endogenous nitric oxide. Neurosci. Lett. 127:67–69.

    Article  PubMed  CAS  Google Scholar 

  • Cellek, S., and Moncada, S. 1997. Nitrergic control of peripheral sympathetic responses in the human corpus cavernosum: a comparison with other species. Proc. Natl. Acad. Sci. USA 94:8226–8231.

    Article  PubMed  CAS  Google Scholar 

  • Cellek, S., and Moncada, S. 1998. Nitrergic neurotransmission mediates the nonadrenergic non-cholinergic responses in the clitoral corpus cavernosum of the rabbit. Br. J. Pharmacol. 125:1627–1629.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F.Y., and Lee, T.J.-E. 1993. Role of nitric oxide in neurogenic vasodilation of porcine cerebral artery. J. Pharmacol. Exp. Ther. 265:339–345.

    PubMed  CAS  Google Scholar 

  • Chen, F.Y., and Lee, T.J.-F. 1995a. Arginine synthesis from citrulline in perivascular nerves of cerebral artery. J. Pharmacol. Exp. Ther. 273:895–901.

    CAS  Google Scholar 

  • Chen, X., and Lee, T.J.-F. 1995b. Ginsenosides-induced nitric oxide-mediated relax-ation of the rabbit corpus cavernosum. Br. J. Pharmacol. 115:15–18.

    Article  CAS  Google Scholar 

  • Chorobski, J., and Penfield, W. 1932. Cerebral vasodilator nerves and their pathway from the medulla oblongata. Arch. Neurol. Psychiat. 28:1257–1289.

    Article  Google Scholar 

  • Chuang, A.T., Strauss, J.D., Murphy, R.A., and Steers, W.D. 1998. Sildenafil, a type-5 CGMP phosphodiesterase inhibitor, specifically amplifies endogenous cGMPdependent relaxation in rabbit corpus cavernosum smooth muscle in vitro. J. Urol. 160:257–261.

    Article  PubMed  CAS  Google Scholar 

  • Donald, J.A., O’Shea, J.E., and Lillywhite, H.B. 1990. Neural regulation of the pulmonary vasculature in a semi-arboreal snake, Elaphe obsoleta. J. Comp. Physiol. (B) 159:677–685.

    CAS  Google Scholar 

  • Edvinsson, L., Hogestatt, E.D., Udmann, R., and Auer, L.M. 1983. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity. J. Cereb. Blood Flow Metab. 3:226–330.

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson, L., Mackenzie, E.T., and McCulloch, J. 1993. Cerebral Blood Flow and Metabolism. Raven Press, New York.

    Google Scholar 

  • Egi, Y., Matsumura, Y., Miura, A., Murata, S., and Morimoto, S. 1995. Interaction between nitric oxide and angiotensin II on antidiuresis and norepinephrine overflow induced by stimulation of renal nerves in anesthetized dogs. J. Cardiovasc. Pharmacol. 25:187–193.

    Article  PubMed  CAS  Google Scholar 

  • Egi, Y., Matsumura, Y., Murata, S., Umekawa, T., Hisaki, K., Takaoka, M., and Morimoto, S. 1994. The effects of N°-nitro-L-arginine, a nitric oxide synthase inhibitor, on norepinephrine overflow and antidiuresis induced by stimulation of the renal nerves in anesthetized dogs. J. Pharmacol. Exp. Ther. 269:529–535.

    PubMed  CAS  Google Scholar 

  • Ehmke, H., Junemann, K.P., Mayer, B., and Kummer, W.1995. Nitric oxide synthase and vasoactive intestinal polypeptide colocalisation in neurons innervating the human penile circulation. Int. J. Impot. Res. 7:147–156.

    PubMed  CAS  Google Scholar 

  • Estrada, C., Mengual, E., and Gonzalez, C. 1993. Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracranial blood vessels: a possible role for nitric oxide in the regulation of cerebral blood flow. J. Cereb. Blood. Flow. Metab. 13:978–984.

    Article  PubMed  CAS  Google Scholar 

  • Faraci, F.M., and Brian, J.E. 1994. Nitric oxide and the cerebral circulation. Stroke 25:692–703.

    Article  PubMed  CAS  Google Scholar 

  • Faraci, F.M., and Heistad, D.D. 1990. Regulation of large cerebral arteries and cerebral microvascular pressures. Circ. Res. 66:8–17.

    Article  PubMed  CAS  Google Scholar 

  • Folkow, B., and Uvnas, B. 1948. The chemical transmission of vasoconstrictor impulses to the hind limbs and the splanchnic region of the cat. Acta Physiol. Scand. 15:365–388.

    Article  PubMed  CAS  Google Scholar 

  • Funk, R.H., Mayer, B., and Worl, J. 1994. Nitrergic innervation and nitrergic cells in arteriovenous anastomoses. Cell Tissue Res. 277:477–484.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R.F., and Zawadzki, J.V. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., and Boulton, C.L. 1995. Nitric oxide signaling in the central nervous system. Annu. Rev. Physiol. 57:683–706.

    Article  PubMed  CAS  Google Scholar 

  • Gaw, A.J., Aberdeen, J., Humphrey, P.P.A., Wadsworth, R.M., and Burnstock, G. 1991. Relaxation of sheep cerebral arteries by vasoactive intestinal polypeptide and neurogenic stimulation: inhibition by L-1V°-monomethyl arginine in endothelium denuded vessels. Br. J Pharmacol. 102:567–572.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, A.,Mirzazadehs, Hobbs, A.J., and Moore, RK. 1990. L-NG monomethylarginine and L-NG nitroarginine inhibit nonadrenergic, noncholinergic relaxation of the mouse anococcygeus. Br. J. Pharmacol. 99:602–606.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J.S., Liu, X.R., and Martin, W. 1989. The effects of L-arginine and N °monomethyl L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. Br. J. Pharmacol. 98:1080–1082.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J.S., Liu, X.R., and Martin, W. 1990. The neurotransmitter of the NANC nerves to smooth muscle of the genital system. In: Nitric Oxide from L-Arginine. A Bioregulatory System (ed. S. Moncada), pp. 147–164. Elsevier, Amsterdam.

    Google Scholar 

  • Giuliano, F.A., Rampin, O., Benoit, G., and Jardin, A. 1995. Neural control of penile erection. Urol. Clin. North Am. 22:747–766.

    PubMed  CAS  Google Scholar 

  • Goadsby, P.J. 1990. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat. Brain Res. 506:145–148.

    Article  PubMed  CAS  Google Scholar 

  • Goadsby, P.J., Uddman, R., Edvinsson, L. 1996. Cerebral vasodilation in the cat involves nitric oxide from parasympathetic nerves. Brain Res. 707:110–118.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C., Barroso, C., Martin, G., Gulbenkian, S., and Estrada, C. 1997. Neuronal nitric oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries. J. Cereb. Blood Flow Metab. 17:977–984.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C., and Estrada, C. 1991. Nitric oxide mediates the neurogenic vasodilation of bovine cerebral arteries. J. Cereb. Blood Flow Metab. 11:366–370.

    Article  PubMed  CAS  Google Scholar 

  • Gorelova, E., Loesch, A., Bodin, P., Chadwick, L., Hamlyn, P.J., and Burnstock, G. 1996. Localisation of immunoreactive factor VIII, NOS, substance P, endothelin and 5-hydroxy-tryptamine in human postmortem middle cerebral artery. J. Anat. 188:97–107.

    PubMed  CAS  Google Scholar 

  • Granger, J., Novak, J., Schnackenberg, C., Williams, S., and Reinhart, G.A. 1996. Role of renal nerves in mediating the hypertensive effects of nitric oxide synthesis inhibition. Hypertension 27:613–618.

    Article  PubMed  CAS  Google Scholar 

  • Gyoda, Y., Tsukada, Y., Saito, A., and Goto, K. 1995. Role of nitric oxide and neuropeptides in neurogenic vasodilatation of the guinea pig mesenteric artery. Eur. J. Pharmacol. 279:83–92.

    Article  PubMed  CAS  Google Scholar 

  • Haberberger, R., Schemann, M., Sann, H., and Kummer, W. 1997. Innervation pattern of guinea pig pulmonary vasculature depends on vascular diameter. J. Appl. Physiol. 82:426–434.

    PubMed  CAS  Google Scholar 

  • Hashitani, H., Windle, A., and Suzuki, H. 1998. Neuroeffector transmission in arterioles of the guinea pig choroid. J. Physiol. (Lond.) 510:209–223.

    Article  CAS  Google Scholar 

  • Hayashida, H., Okamura, T., Tomoyoshi, T., and Toda, N. 1996. Neurogenic nitric oxide mediates relaxation of canine corpus cavernosum. J. Urol. 155:1122–1127.

    Article  PubMed  CAS  Google Scholar 

  • Hill, B., Ralevic, V., Crowe, R., and Burnstock, G. 1996. Innervation and nitric oxide modulation of mesenteric arteries of the golden hamster. Eur. J. Pharmacol. 317:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle, C.H., Stones, R.W., Robson, T., Whitley, K., and Burnstock, G. 1996. Innervation of the vasculature and microvasculature of the human vagina by NOS and neuropeptide-containing nerves. J. Anat. 188:633–644.

    PubMed  Google Scholar 

  • Iadecola, C., Pellegrino, D.A., Moskowitz, M.A., and Lassen, N.A. 1994. Nitric oxide synthase inhibition and cerebrovascular regulation. J. Cereb. Blood Flow Metab. 14:175–192.

    Article  PubMed  CAS  Google Scholar 

  • Ichihara, A., Inscho, E.W., Imig, J.D., and Navar, L.G. 1998. Neuronal nitric oxide synthase modulates rat renal microvascular function. Am. 1. Physiol. 274:F516–F524.

    CAS  Google Scholar 

  • Ignarro, L.J., Bush, P.A., Buga, G.M., Woods, K.S., Fukuto, J.M., and Rajefer, J. 1990. Nitric oxide and cGMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun. 170:843–850.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Byrns, R.E., Buga, G.M., and Wood, K.S. 1987. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res. 60:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Ishine, T., Asada, Y., Yu, J.G., and Lee, T.J.F. 1999. Nitric oxide is predominant mediator for neurogenic vasodilation in the porcine pial veins. J. Pharmacol. Exp. Ther. 289(1):398–404.

    PubMed  CAS  Google Scholar 

  • Itakura, T. 1983. Aminergic and cholinergic innervations of the spinal cord blood vessels of cats. J. Neurosurg. 58:900–905.

    Article  PubMed  CAS  Google Scholar 

  • Kakuyama, M., Valiance, P., and Ahluwalia, A. 1998. Endothelium-dependent sensory NANC vasodilation: involvement of ATP, CGRP and a possible NO store. Br. J. Pharmacol. 123:310–316.

    Article  PubMed  CAS  Google Scholar 

  • Katholi, R.E. 1983. Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am. J. Physiol. 245:F1–F14.

    PubMed  CAS  Google Scholar 

  • Katholi, R.E. 1985. Renal nerves and hypertension: an update. Fed. Proc. 44: 2846–2850.

    PubMed  CAS  Google Scholar 

  • Katholi, R.E., and Woods, W.T. 1987. Afferent renal nerves and hypertension. Clin. Exp. Hypertens. A.9 Suppl 1:211–226.

    Google Scholar 

  • Kimura, T., Yu, J.G., Edvisson, L., and Lee, T.J.-E. 1997. Cholinergic, nitric oxidergic innervation in cerebral arteries of the cat. Brain Res. 773:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Knight, D.S., Ellison, J.P., Hibbs, R.G., Hyman, A.L., and Kadowitz, EJ. 1981. A light and electron microscopic study of the innervation of pulmonary arteries in the cat. Anat. Rec. 201:513–521.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.J.-F. 1980. Direct evidence against acetylcholine as the dilator transmitter in the cat cerebral artery. Eur. J. Pharmacol. 68:393–394.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.J.-F. 1982. Cholinergic mechanisms in the large cat cerebral arteries. Circ. Res. 50:870–879.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.J.-F. 1986. Sympathetic and nonsympathetic transmitter mechanisms in cerebral vasodilation and constriction. Proceedings of the Erin K. Fernstrom Sympo-sium on Neural Regulation of Brain Circulation (eds. C. Owman et al.), pp. 285–296. Elsevier Biomedical Press.

    Google Scholar 

  • Lee, T.J.-F. 1987. Evidence for and against VIP as a transmitter for vasodilation in cerebral blood vessels. In: Peptidergic Mechanisms in the Cerebral Circulation (eds. L. Edvinsson and J. McCulloch), pp. 65–74. New York: Ellis Horwood.

    Google Scholar 

  • Lee, T.J.-F. 1994. Putative transmitters in cerebral neurogenic vasodilation. In: The Human Brain Circulation: Functional Changes in Disease (eds. J.A. Bevan and R.D. Bevan), pp. 73–91, Totowa, New Jersey: Humana Press.

    Google Scholar 

  • Lee, T.J.-F., and Bevan, J.A. 1974. The effect of nerve stimulation and pharmacological agents on the contractile activity of the isolated basilar artery of the rabbit. Proc. West. Pharmacol. Soc. 17:129–131.

    Google Scholar 

  • Lee, T.J.-F, Chen, F.Y., and Sarwinski, S. 1993. Role of NO, VIP and CGRP in cere-bral neurogenic vasodilation. J. Cereb. Blood Flow Metab. 13 (Suppl 1):S264.

    Google Scholar 

  • Lee, T.J.-E, Chiueh, C.C., and Adams, M. 1980. Synaptic transmission of vasoconstrictor nerves in the rabbit basilar artery. Eur. J. Pharmacol 61:55–70.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.J.-F., Fang, Y.X., and Nickils, G.A. 1989. Cyclic nucleotides and cerebral neurogenic vasodilation. In: Neurotransmission and Cerebrovascular Function (eds. J. Seylaz and E.T. Mackenzie), pp. 277–280. Amsterdam: Elsevier.

    Google Scholar 

  • Lee, T.J.-F., Hume, W.R., Su, C., and Bevan, J.A. 1978. Neurogenic vasodilation of cat cerebral arteries. Circ. Res. 42:535–542.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.J.-E., Kinkhead, L., and Sarwinski, S.1982. Norepinephrine and acetylcholine transmitter mechanism in pig cerebral blood vessels. J. Cerebral Blood Flow Metab. 2:439–450.

    Article  CAS  Google Scholar 

  • Lee, T.J.-F., Linnik, M.D., and Miao, F.J.-P. 1988. Erythrocyte extracts and cerebral vascular function. In: Vascular Neuroeffector Mechanisms (eds. J.A. Bevan, H. Majewski, R.A. Maxwell, and D.F. Story), pp. 299–309. Oxford: IRL Press.

    Google Scholar 

  • Lee, T.J.-F., Mcllhany, M.P., and Sarwinski, S. 1984a. Erythrocyte extracts enhance neurogenic vasoconstriction of cerebral arteries in vitro. J. Cerebral Blood Flow Metab. 4:474–476.

    Article  CAS  Google Scholar 

  • Lee, T.J.-F., Saito, A., and Beresein, I. 1984b. Vasoactive intestinal polypeptide-like substance: the potential cerebral vasodilator transmitter. Science 224:898–901.

    Article  CAS  Google Scholar 

  • Lee, T.J.-F., and Sarwinski, S.J. 1991. Nitric oxidergic neurogenic vasodilation in the porcine basilar artery. Blood Vessels 28:402–412.

    Google Scholar 

  • Lee, T.J.-F., Sarwinski, S., Ishine, T., Lai, C., and Chen, F.Y. 1996 Inhibition of cerebral neurogenic vasodilation by L-glutamine and nitric oxide synthase inhibitors. J. Pharmacol. Exp. Ther. 267:353–358.

    Google Scholar 

  • Lee, T.J.-F., Su, C., and Bevan, J.A. 1975. Nonsympathetic dilator innervation of cat cerebral arteries. Experientia 31:1424–1425.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.J.-F., Su, C., and Bevan, J.A. 1976. Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Circ. Res. 39:120–126.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, R.A. 1993. NANC neurotransmission in the proximal stomach. Gen. Pharmacol. 24:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.G., and Rand, M.J. 1989. Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle. Clin. Exp. Pharmacol. Physiol. 16:933–938.

    Article  PubMed  CAS  Google Scholar 

  • Linnik, M.D., and Lee, T.J.-E 1989. Effects of hemoglobin on neurogenic responses and cholinergic parameters in porcine cerebral arteries. Cerebral Blood Flow Metab. 9:219–225.

    Article  CAS  Google Scholar 

  • Liu, J., and Lee, T.J.-E. 1999. Mechanism of prejunctional muscarinic receptor-mediated inhibition of neurogenic vasodilation in cerebral arteries. Am. J. Physiol. 276:H194–H204.

    PubMed  CAS  Google Scholar 

  • Liu, S.F., Crawley, D.E., Rohde, J.A., Evans, T.W., and Barnes, P.J. 1992. Role of nitric oxide and guanosine 3’,5’-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries. Br. J. Pharmacol. 107:861–866.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J.M. 1996. Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev. 48:113–178.

    PubMed  CAS  Google Scholar 

  • Lundberg, J.M., and Tatemoto, K. 1982. Pancreatic polypeptide family (APP, BPP, NPY and PYY) in relation to sympathetic vasoconstriction resistant to adrenoceptor blockade. Acta. Physiol. Scand. 116:393–402.

    Article  PubMed  CAS  Google Scholar 

  • Maekawa, H., Matsumura, Y., Matsuo, G., and Morimoto, S. 1996. Effect of sodium nitroprusside on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetised dogs. J. Cardiovasc. Pharmacol. 27:211–217.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W., and Gillespie, J.S. 1991. L-Arginine derived nitric oxide: the basis of inhibitory transmission in the anococcygeus and retractor penis muscle. In: Novel Peripheral Neurotransmitters (ed. C. Bell), pp. 65–79. Pergamon, New York.

    Google Scholar 

  • Martin, W., Villani, G.M., Jothianandan, D., and Furchgott, R.F. 1985. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232:708–716.

    PubMed  CAS  Google Scholar 

  • Matsuoka, H., Nishida, H., Nomura, G., Van Vliet, B.N., and Toshima, H. 1994. Hypertension induced by nitric oxide synthesis inhibition is renal nerve dependent. Hypertension 23:971–975.

    Article  PubMed  CAS  Google Scholar 

  • Matthew, J.D., Wadsworth, R.M., and McPhaden, A.R. 1997. Inhibition of vasodilator neurotransmission in the sheep middle cerebral artery by VIP antiserum. J. Auton. Pharmacol. 17:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Merhi, M., Dusting, G.J., and Khalil, Z. 1998. CGRP and nitric oxide of neuronal origin and their involvement in neurogenic vasodilation in rat skin microvasculature. Br. J. Pharmacol. 123:863–868.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M., and Higgs, E.A. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142.

    PubMed  CAS  Google Scholar 

  • Moreland, R.B., Goldstein, I., and Traish, A. 1998. Sildenafil, a novel inhibitor of phosphodiesterase type 5 in human corpus cavernosum smooth muscle cells. Life Sci. 62:309–318.

    Article  Google Scholar 

  • Morishita, T., and Guth, P.H. 1986. Vagal nerve stimulation causes noncholinergic dilatation of gastric arterioles. Am. J. Physiol. 250:G660–G664.

    PubMed  CAS  Google Scholar 

  • Morita-Tsuzuki, Y., Hardebo, J.E., and Bouskela, E. 1993. Inhibition of nitric oxide synthase attenuates the cerebral blood flow response to stimulation of post-ganglionic parasympathetic nerves in the rat. J. Cereb Blood Flow Metab. 13(6):993–997.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J.L., and Murphy, R. 1988. Evidence that neuropeptide Y released from noradrenergic axons causes prolonged contraction of the guinea pig uterine artery. J. Auton. Nerv. Syst. 24:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Nase, G.P., and Boegehold, M.A. 1996. Nitric oxide modulates arteriolar responses to increased sympathetic nerve activity. Am J. Physiol. 271:H860–H869.

    PubMed  CAS  Google Scholar 

  • Nozaki, K., Moskowitz, M.A., Maynard, K.I., Koketsu, N., Dawson, T.M., Bredt, D.S., and Snyder, S.H. 1993. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J. Cereb. Blood. Flow. Metab. 13:70–79.

    Article  PubMed  CAS  Google Scholar 

  • Okamura, T., Yoshida, K., and Toda, N. 1995. Nitricoxidergic innervation in the dog and monkey renal arteries. Hypertension 25:1090–1095.

    Article  PubMed  CAS  Google Scholar 

  • Okuno, T., Itakura, T.L., Lee, T.J.-F., Masami, U., Shimizu, M., and Komai, N. 1994. Cerebral pial arterial innervation with specific reference to GABAergic innervations. J. Auton. Nerv. Syst. 49:5105-S110.

    Article  Google Scholar 

  • Peng, C.F., Li, Y.J., Li, Y.J., and Deng, H.W. 1995. Effects of ginsenosides on vasodilator nerve actions in the rat perfused mesentery are mediated by nitric oxide. J. Pharm. Pharmacol. 47:614–617.

    Article  PubMed  CAS  Google Scholar 

  • Poeggel, G., Muller, M., Seidel, I., Rechardt, L., and Bernstein, H.G. 1992. Histochemistry of guanylate cyclase, phosphodiesterase, and NADPH-diaphorase (nitric oxide synthase) in rat brain vasculature. J. Cardiovasc. PhrmacoL 20 (Suppl 12):S76–S79.

    Article  CAS  Google Scholar 

  • Ramgopal, M.V., and Leighton, H.J. 1989. Effect of N ° monomethyl-L-arginine on field stimulation induced decreases in cytosolic Ca’ levels and relaxation in the rat anococcygeus muscle. Eur. J. Pharmacol. 174:297–299.

    Article  Google Scholar 

  • Rand, M.J., and Li, C.G. 1995. Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu. Rev. Physiol. 57:659–682.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart, G.A., Lohmeier, T.E., and Mizelle, H.L. 1997. Temporal influence of the renal nerves on excretory function during chronic inhibition of nitric oxide synthesis. Hypertension 29:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., and Goto, K. 1994. Vasodilator innervation of small cerebral arteries of guinea pigs. J. Auton. Nerv. Syst. 49 (Suppl.):S59–S62.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Masaki, T., Uchiyama, Y., Lee, T.J.-F., and Goto, K. 1989. Calcitonin gene-related peptide (CGRP) and vasodilator nerves in large cerebral arteries of cats. J. Pharmacol Exp. Thec 248:455–462.

    CAS  Google Scholar 

  • Sanders, K.M., and Ward, S.M. 1992. Nitric oxide as a mediator of NANC neurotransmission. Am J. Physiol. 262:G379–G392.

    PubMed  CAS  Google Scholar 

  • Seylaz, J., Hara, H., Pinard, E., Moravitch, S., MacKenzie, E.T., and Edvinsson, L. 1988. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J. Cereb. Blood Flow Metab. 8:875–878.

    Article  PubMed  CAS  Google Scholar 

  • Simonsen, U., Prieto, D., Hernandez, M., Saenz de Tejada, I., and Garcia-Sacristan, A. 1997. Prejunctional alpha2-adrenoceptors inhibit nitrergic neurotransmission in horse penile resistance arteries. J. Urol. 157:2356–2360.

    Article  PubMed  CAS  Google Scholar 

  • Sjostrand, N.O., Ehren, I., Eldh, J., and Wiklund, N.P. 1998. NADPH-diaphorase in glandular cells and nerves and its relation to acetylcholinesterase-positive nerves in the male reproductive tract of man and guinea-pig. Urol. Res. 26:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon, P., and Graham, A. 1992. Role of nitric oxide in the autonomic innervation of smooth muscle. J. Auton. Pharmacol. 12:445–456.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S.H. 1992. Nitric oxide: first in a new class of neurotransmitters. Science 257:494–496.

    Article  PubMed  CAS  Google Scholar 

  • Stark, M.E., and Szurszewski, J.H. 1992. Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 103:1928–1949.

    PubMed  CAS  Google Scholar 

  • Su, C., and Bevan, J.A. 1976. Pharmacology of pulmonary blood vessels. Pharmacol. Ther. [B] 2:275–288.

    CAS  Google Scholar 

  • Su, C., and Lee, T.J.-E. 1976. Regional variation of adrenergic and nonadrenergic nerves in blood vessels. Second International Symposium on Vascular Neuroeffector Mechanism, University of Odense, Denmark, pp. 35–42. Karger, Basel.

    Google Scholar 

  • Suzuki, N., Fukuuchi, Y., Koto, A., Naganuma, Y., Isozumi, K., Matsuoko, S., Gotoh, J., and Shimuzu, T. 1993. Cerebrovascular NADPH diaphorase-containing nerve fibers in the rat. Neurosci. Leu. 151:1–3.

    Article  CAS  Google Scholar 

  • Suzuki, N., and Hardebo, J.E. 1993. The cerebrovascular parasympathetic innervation. Cerebrovasc. Brain Metab. Rev. 5:33–46.

    PubMed  CAS  Google Scholar 

  • Suzuki, N., Hardebo, J.E., Kahrstrom, J., and Owman, C. 1990. Selective electrical stimulation of postganglionic cerebral vascular parasympathetic nerve fibers originating from the sphenopalatine ganglion enhances the cortical blood flow in the rat. J. Cereb. Blood Flow Metab. 10:383–391.

    Article  PubMed  CAS  Google Scholar 

  • Takenaga, M., Kawasaki, H., Wada, A., and Eto, T. 1995. Calcitonin gene-related peptide mediates acetylcholine-induced endothelium-independent vasodilation in mesenteric resistance blood vessels of the rat. Circ. Res. 76:935–941.

    Article  PubMed  CAS  Google Scholar 

  • Toda, M., Okamura, T., Azuma, I., and Toda, N. 1997. Modulation of neurogenic acetylcholine of nitroxidergic function in porcine ciliary arteries. Invest. Ophthalmol Vis. Sci. 38:2261–2269.

    PubMed  CAS  Google Scholar 

  • Toda, N., Ayajiki, K., and Okamura, T. 1993a. Neural mechanism underlying basilar arterial constriction by intracisternal L-NNA in anesthetized dogs. Am. J. Physiol. 265:H103–H107.

    CAS  Google Scholar 

  • Toda, N., Ayajiki, K., Yoshida, K., Kimura, H., and Okamura, T. 1993b. Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. Circ. Res. 72:206–213.

    Article  CAS  Google Scholar 

  • Toda, N., Kitamura, Y., and Okamura, T. 1994. Role of nitroxidergic nerve in dog retinal arterioles in vivo and arteries in vitro. Am. J. Physiol. 266:H1985–H1992.

    PubMed  CAS  Google Scholar 

  • Toda, N., and Okamura, T. 1990a. Possible role of nitric oxide in transmitting information from vasodilator nerve to cerebroarterial muscle. Biochem. Biophys. Res. Commun. 170:308–313.

    Article  CAS  Google Scholar 

  • Toda, N., and Okamura, T. 1990b. Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am. J. Physiol. 259:H1511–H1517.

    CAS  Google Scholar 

  • Toda, N., Toda, M., Ayajiki, K., and Okamura, T. 1996. Monkey central retinal artery is innervated by nitroxidergic vasodilator nerves. Invest. Ophthalmol Vis. Sci. 37: 2177–2184.

    PubMed  CAS  Google Scholar 

  • Toda, N., Toda, M., Ayajika, K., and Okamura, T. 1998. Cholinergic nerve function in monkey ciliary arteries innervated by nitroxidergic nerve. Am. J. Physiol. 274:H1582–H1589.

    PubMed  CAS  Google Scholar 

  • Tomimoto, H., Akiguchi, I., Wakita, H., Nakamura, S., and Kimura, J. 1993. Distribution of NADPH diaphorase in the cerebral blood vessels of rats: a histochemical study. Neurosci. Len. 156:105–108.

    Article  CAS  Google Scholar 

  • Tottrup, A. 1993. The role of nitric oxide in oesophageal motor function. Dis. Esophagus 6:2–10.

    Google Scholar 

  • Tsuchiya, K., Urabe, M., Yamamoto, R., Asada, Y., and Lee, T.J.-F. 1993. Effects of L-NP’-nitro-arginine and capsaicin on neurogenic vasomotor responses in isolated mesenteric arteries of the monkey. J. Pharmac. Pharmacol. 46:155–157.

    Article  Google Scholar 

  • Vanner, S., and Surprenant, A. 1996. Neural reflexes controlling intestinal micro-circulation. Am. J. Physiol. 271:G223–G230.

    PubMed  CAS  Google Scholar 

  • Vials, A.J., Crowe, R., and Burnstock, G. 1997. A neuromodulatory role for neuronal nitric oxide in the rabbit renal artery. Br. J. Pharmacol. 121:213–220.

    Article  PubMed  CAS  Google Scholar 

  • Von Kugelgen, I., and Starke, K. 1985. Noradrenaline and adenosine triphosphate as cofactors of neurogenic vasoconstriction in rabbit mesenteric artery. J. Physiol. (Lond.) 367:435–455.

    Google Scholar 

  • Wiencke, A.K., Nilsson, H., Nielsen, P.J., and Nyborg, N.C. 1994. Nonadrenergic noncholinergic vasodilation in bovine ciliary artery involves CGRP and neurogenic nitric oxide. Invest. Ophthalmol Vis. Sci. 35:3268–3277.

    PubMed  CAS  Google Scholar 

  • Yamamoto, R., Wada, A., Asada, Y., Yanagita, T., Yuhi, T., Niina, H., Sumiyoshi, A., Kobayashi, H., and Lee, T.J.-F. 1997. Nitric oxide-dependent and -independent norepinephrine release in rat mesenteric arteries. Am. J. Physiol. 273:H207–H210.

    Google Scholar 

  • Yoshida, K., Okamura, T., Kimura, H., Bredt, D.S., Snyder, S.H., and Toda, N. 1993. Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries. Brain Res. 629:67–72.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., Okamura, T., and Toda, N. 1994. Histological and functional studies on the nitroxidergic nerve innervating monkey cerebral, mesenteric and temporal arteries. Jpn. J. Pharmacol 65:351–359.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.G., Ishine, T., Kimura, T., O’Brien, W.E., and Lee, T.J.-F. 1997a. L-Citrulline conversion to L-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig. Am. J. Physiol. 273 (Heart Circ. Physiol. 42):H2192–H2199.

    Google Scholar 

  • Yu, J.G., Kimura, T., Chang, X.-E, and Lee, T.J.-F. 1998. Segregation of VlPergicnitric oxidergic and cholinergic-nitric oxidergic innervation in porcine middle cerebral arteries. Brain Res. 801:78–87.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.G., O’Brien, W.E., and Lee, T.J.-F. 1997b. Morphologic evidence for L-citrulline conversion to L-arginine via the argininosuccinate pathway in porcine cerebral perivascular nerves. J. Cereb. Blood Flow Metab. 17:884–893.

    Article  CAS  Google Scholar 

  • Zhang, W., Edvinsson, L., and Lee, T.J.-E 1998. Mechanism of nicotine-induced relaxation in the porcine basilar artery. J. Pharmacol. Exp. Ther. 284:790–797.

    PubMed  CAS  Google Scholar 

  • Zhao, G., Hintze, T.H., and Kaley, G. 1996a. Neural regulation of coronary vascular resistance: role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states. EXS 76:1–19.

    CAS  Google Scholar 

  • Zhao, G., Shen, W., Zhang, X., Smith, C.J., and Hintze, T.H. 1996b. Loss of nitric oxide production in the coronary circulation after the development of dilated cardiomyopathy: a specific defect in the neural regulation of coronary blood flow. Clin. Exp. Pharmacol. Physiol. 23:715–721.

    Article  CAS  Google Scholar 

  • Zheng, Z., Shimamura, K., Anthony, T.L., Travagli, R.A., and Kreulen, D.L. 1997. Nitric oxide is a sensory nerve neurotransmitter in mesenteric artery of guinea pig. J. Auton. Nerv. Syst. 67:137–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, T.JF., Mishra, R. (2000). Nitrergic Neurogenic Control of Resistance Blood Vessels. In: Kalsner, S. (eds) Nitric Oxide and Free Radicals in Peripheral Neurotransmission. Nitric Oxide in Biology and Medicine, vol 2. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1328-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1328-4_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7096-6

  • Online ISBN: 978-1-4612-1328-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics