Peroxynitrite and Nitrergic Neural Transmission: Pathophysiological Implications

  • Gert Folkerts
  • Axel Fischer
  • Richard B. R. Muijsers
  • Frans P. Nijkamp
Part of the Nitric Oxide in Biology and Medicine book series (NOBM, volume 2)

Abstract

Up to 5% of the life-sustaining, inspired oxygen (2) is converted to oxygen free radicals. The addition of a single electron to 02 produces the superoxide anion radical (O2’1; superoxide can be converted spontaneously or by the catalytic superoxide dismutase (SOD) to the nonradical molecule hydrogen peroxide (H202), which can be toxic at high concentrations and, more importantly, can be reduced to the hydroxyl radical (’OH) (Reiter et al., 1995). Superoxide is released during the respiratory burst of granulocytes and macrophages by NADPH-oxidase activity, in response to several stimuli (Babior, 1978;Baggiolini and Wymann, 1990). Superoxide is also produced during the auto-oxidation of hemoglobin, myoglobin, and cytochrome c. Furthermore, enzymes like xanthine oxidase, aldehyde oxidase, and a variety of flavin dehydrogenases are sources of superoxide. Superoxide is therefore produced by virtually all aerobic cells (McCord and Fridovich, 1968).

Keywords

Ischemia Glutathione Ozone Respiration Nitrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcock, I.M., Brown, C.R., Kwon, O., and Barnes, P.J. 1994. Oxidative stress NF kappa B DNA binding and inducible NOS mRNA in human epithelial cells. Biochem. Biophys. Res. Commun. 199:1518–1524.PubMedCrossRefGoogle Scholar
  2. Aimi, Y., Fujimura, M., Vincent, S.R., and Kimura, H. 1991. Localization of NADPHdiaphorase-containing neurons in sensory ganglia of the rat. J. Comp. Neurol. 306:382–392.PubMedCrossRefGoogle Scholar
  3. Akaike, T., Noguchi, Y., Ijiri, S., Setoguchi, K., Suga, M., Zheng, Y.M., Dietzschold, B., and Maeda, H. 1996. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc. Natl. Acad. Sci. USA 93:2448–2453.PubMedCrossRefGoogle Scholar
  4. Althaus, J.S., Oien, T.T., Fici, G.J., Scherch, H.M., Sethy, V.H., and VonVoightlander, P.F. 1994. Structure activity relationships of peroxynitrite scavengers: an approach to nitric oxide neurotoxicity. Res. Comm. Chem. Pathol. Pharmacol. 83:243–254.Google Scholar
  5. Antonini, J.M., DiMatteo, M., Reasor, M.J., and Dyke, K. van 1995. Attenuation of acute inflammatory effects of silica in rat lung by 21-aminosteroid, U74389G. Inflammation 19:9–21.PubMedCrossRefGoogle Scholar
  6. Arkovitz, M.S., Wispe, J.R., Garcia, V.F., and Szabo, C. 1996. Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary transvascular flux during acute endotoxemia. J. Pediat. Surg. 31:1009–1015.PubMedCrossRefGoogle Scholar
  7. Asano, K., Chee, C.B.E., Gaston, B., Lilly, C.M., Gerard, C., Drazen, J.M., and Stamler, J.S. 1994. Constitutive and inducible nitric oxide synthase gene expression, regulation and activity in human lung epithelial cells. Proc. Natl. Acad. Sci. USA 91:10089–10093.PubMedCrossRefGoogle Scholar
  8. Assreuy, J., Cunha, F.Q., Epperlein, M., Noronha-Dutra, A., O’Donnell, C.A., Liew, F.Y., and Moncada, S. 1994. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur. J. Immunol. 24:672–676.Google Scholar
  9. Assreuy, J., Cunha, F.Q., Liew, F.Y., and Moncada, S. 1993. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br. J. Pharmacol. 108:833–837.PubMedCrossRefGoogle Scholar
  10. Augusto, O., Gatti, R.M., and Radi, R. 1994. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates. Arch. Biochem. Biophys. 310:118–125.PubMedCrossRefGoogle Scholar
  11. Avron, A., and Gallily, R. 1995. Mycoplasma stimulates the production of oxidative radicals by murine peritoneal macrophages. J. Leukocyte Biol. 57:264–268.PubMedGoogle Scholar
  12. Babior, B.M. 1978. Oxygen dependent microbial killing by phagocytes. N. Engl.J. Med. 298:659–688.PubMedCrossRefGoogle Scholar
  13. Baggiolini, M., and Wymann, M.P. 1990. Turning on the respiratory burst. Trends Biochem. Sci. 15:69–72.PubMedCrossRefGoogle Scholar
  14. Bauer, M.L., Beckman, J.S., Bridges, R.J., Fuller, C.M., and Matalon, S. 1992. Peroxynitrite inhibits sodium uptake in rat colonic membrane vesicles. Biochim. Biophys. Acta 1104:87–94.PubMedCrossRefGoogle Scholar
  15. Beckman, J.S. 1991. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J. Dey. Physiol. 15:53–59.Google Scholar
  16. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A. 1990. Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. 87:1620–1624.PubMedCrossRefGoogle Scholar
  17. Beckman, J.S., and Crow, J.P. 1993. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 21:330–334.PubMedGoogle Scholar
  18. Belvisi, M.G., Stretton, C.D., Yacoub, M., and Barnes, P.J. 1992. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur. J. Pharmacol. 210:221–222.PubMedCrossRefGoogle Scholar
  19. Berezin, I., Snyder, S.H., Bredt, D.S., and Daniel, E.E. 1994. Ultrastructural localization of nitric oxide synthase in canine small intestine. Am. J. Physiol. 266:C981–C989.PubMedGoogle Scholar
  20. Blackford, J.A., Antonini, J.M.J., Castranova, V., and Dey, R.D. 1994. Intratracheal instillation of silica up-regulates inducible nitric oxide synthase gene expression and increases nitric oxide production in alveolar macrophages and neutrophils. Am. J. Respir. Crit. Care Med. 11:426–431.Google Scholar
  21. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S.A. 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide /superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92:7162–7166.PubMedCrossRefGoogle Scholar
  22. Bratt, J., and Gyllenhammer, H. 1995. The role of nitric oxide in lipoxin A4-induced polymorphonuclear neutrophil-dependent cytotoxicity to human vascular endothelium in vitro. Arthritis Rheum. 38:768–776.PubMedCrossRefGoogle Scholar
  23. Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, E, Xia, H., Peters, M.F., Froehner, S.C., and Bredt, D.S. 1996. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alphall-syntrophin mediated by PDZ domains. Cell 84:757–767.PubMedCrossRefGoogle Scholar
  24. Buttery, L.D., Evans, T.J., Springall, D.R., Carpenter, A., Cohen, J., and Polak, J.M. 1994 Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab. Invest. 71:755–764.PubMedGoogle Scholar
  25. Caldwell, M., O’Neill, M., Earley, B., Kelly, J.P., and Leonard, B.E. 1995. N-G nitroL-arginine methyl ester protects against lipid preoxidation in the gerbil following cerebral ischaemia. Eur. J. Pharmacol. 285:203–206.PubMedCrossRefGoogle Scholar
  26. Canning, B.J., and Fischer, A. 1997. Localization of cholinergic nerves in lower airways of guinea pigs using antisera to choline acetyltransferase. Am. J. Physiol. 272:L731–L738.PubMedGoogle Scholar
  27. Canning, B.J., and Undem, B.J. 1993a. Evidence that distinct neural pathways mediate parasympathetic contractions and relaxations of guinea-pig trachealis. J. Physiol. 471:25–40.Google Scholar
  28. Canning, B.J., and Undem, B.J. 1993b. Relaxant innervation of the guinea-pig trachealis: demonstration of capsaicin-sensitive vagal pathways. J. Physiol. 460:719–739.Google Scholar
  29. Carreras, M.C., Pargament, G.A., Catz, S.D., Poderoso, J.J., and Boveris, A. 1994. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 341:65–68.PubMedCrossRefGoogle Scholar
  30. Castro, L., Rodriguez, M., and Radi, R. 1994. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J. Biol. Chem. 269:29409–29415.PubMedGoogle Scholar
  31. Corbett, J.A., Tilton, R.G., Chang, K., Hassan, K.S., Ido, Y., Wang, J.L., Sweetland, M.A., Lancaster, J.R., Williamson, J.R., and McDaniel, M.L. 1992 Aminoguanidine, a novel inhibitor of nirtic oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552–556.PubMedCrossRefGoogle Scholar
  32. Darley-Usmar, V.M., Hogg, N., O’Leary, V.J., Wilson, M.T., and Moncada, S. 1992. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Rad. Biol. Med. 17:9–20.Google Scholar
  33. Dawson, V.L. 1995. Nitric oxide: role in neurotoxicity. Clin. Exp. Pharmacol. Physiol. 22:305–308.PubMedCrossRefGoogle Scholar
  34. Denicola, A., Rubbo, H., Rodriguez, D., and Radi, R. 1993. Peroxynitrite-mediated cytotoxicity to Trypanosoma cruzi. Arch. Biochem. Biophys. 304:279–286.CrossRefGoogle Scholar
  35. Dey, R.D., Altemus, J.B., Rodd, A., Mayer, B., Said, S.I., and Coburn, R.F. 1996. Neurochemical characterization of intrinsic neurons in ferret tracheal plexus. Am. J. Respir. Cell Mol. Biol. 14:207–216.PubMedGoogle Scholar
  36. Dey, R.D., Mayer, B., and Said, S.I. 1993. Colocalization of vasoactive intestinal peptide and nitric oxide synthase in neurons of the ferret trachea. Neuroscience 54:839–843.PubMedCrossRefGoogle Scholar
  37. Diaz, de R.O., Villaro, A.C., Montuenga, L.M., Martinez, A., Springall, D.R., and Polak, J.M. 1993. Nitric oxide synthase-immunoreactive neurons in the human and porcine respiratory tract. Neurosci. Lett. 162:121–124.CrossRefGoogle Scholar
  38. Dubbo, H., Denicola, A., and Radi, R. 1994. Peroxynitrite inactivates thiolcontaining enzymes of Trypanosoma cruzi energetic metabolism and inhibits cell respiration. Arch. Biochem. Biophys. 308:96–102.CrossRefGoogle Scholar
  39. Eiserich, J.P., Cross, C.E., Jones, A.D., Halliwell, B., and van der Vliet, A. 1996. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid-a novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271:19199–19208.PubMedCrossRefGoogle Scholar
  40. Ellis, J.L., and Undem, B.J. 1992. Antigen-induced enhancement of noncholinergic contractile responses to vagus nerve and electrical field stimulation in guinea pig isolated trachea. J. Pharmacol. 262:646–653.Google Scholar
  41. Ely, D., Dunphy, G., Dollwet, H., Richter, H., Sellke, R, and Azodi, M. 1992. Maintenance of left ventricular function (90%) after twenty-four hour heart preservation with deferoxamine. Free Rad. Biol. Med. 12:479–485.PubMedCrossRefGoogle Scholar
  42. Erjefalt, J.S., Erjefalt, I., Sundler, F., and Persson, C.G. 1994. Mucosal nitric oxide may tonically suppress plasma exudation. Am. J. Respir. Crit. Care Med. 150:227–232.PubMedGoogle Scholar
  43. Fischer, A., Canning, B.J., and Kummer, W. 1996a. Correlation of vasoactive intestinal peptide and nitric oxide synthase with choline acetyltransferase in the airway innervation. Ann. NY Acad. Sci. 805:717–722.CrossRefGoogle Scholar
  44. Fischer, A., and Hoffmann, B. 1996. Nitric oxide synthase in neurons and nerve fibers of lower airways and in vagal sensory ganglia of man. Am. J. Respir. Crit. Care Med. 154:209–216.PubMedGoogle Scholar
  45. Fischer, A., Mayer, B., and Kummer, W. 1996b. Nitric oxide synthase in vagal sensory and sympathetic neurons innervating the guinea-pig trachea. J. Auton. Nerv. Syst. 56:157–160.CrossRefGoogle Scholar
  46. Fischer, A., Mundel, P., Mayer, B., Preissler, U., Phillippin, B., and Kummer, W. 1993. Nitric oxide synthase in guinea pig lower airway innervation. Neurosci. Lett. 149:157–160.PubMedCrossRefGoogle Scholar
  47. Förstermann, U., Pollock, J.S., Schmidt, H.H.H.W., Heller, M., and Murad, R 1991a. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 88:1778–1792.CrossRefGoogle Scholar
  48. Förstermann, U., Schmidt, H.H.H.W., Pollock, J.S., Sheng, H., Mitchell, J.A., Warner, T.D., Nakane, M., and Murad, E 1991b. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol. 42:1849–1857.CrossRefGoogle Scholar
  49. Folkerts, G., Busse, W.W., Nijkamp, F.P., Sorkness, R., and Gern, J.E. 1998. Virus-induced airway hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 157:1708–1720.PubMedGoogle Scholar
  50. Folkerts, G., and Nijkamp, F.P. 1998. Airway epithelium: more than just a barrier! Trends Pharmacol Sci. 19:334–341.PubMedCrossRefGoogle Scholar
  51. Garcia-Cardena, G., Oh, P., Liu, J., Schnitzer, J.E., and Sessa, WC. 1996. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitic oxide signaling. Proc. Natl. Acad. Sci. USA 93:6448–6453.PubMedCrossRefGoogle Scholar
  52. Garvey, E.P, Oplinger, J.A., Tanoury, G.J., Sherman, PA., Fowler, M., Marshall, S., Harmon, M.F., Paith, J.E., and Furfine, E.S. 1994. Potent and selective inhibition of human nitric oxide synthase. Inhibition by non-amino acid isothioureas. J. Biol. Chem. 269:26669–26676.PubMedGoogle Scholar
  53. Gaston, B., Drazen, J.M., Loscalzo, J., and Stamler, J.S. 1994. The biology of nitro-gen oxides in the airways. Am. J. Respir. Crit. Care Med. 149:538–551.PubMedGoogle Scholar
  54. Giovannoni, G., Heales, S.J., Land, J.M., and Thompson, E.J. 1998. The potential role of nitric oxide in multiple selerosis. Mutat. Res. 4:212–216.Google Scholar
  55. Goldman, D., Cho, Y., Zhao, M., Casadevall, A., and Lee, S.C. 1996. Expression of inducible nitric oxide synthase in rat pulmonary Cryptococcus neoformans granulomas. Am. J. Pathol. 148:1275–1282.PubMedGoogle Scholar
  56. Goldstein, S., and Czapski, G. 1995. The reaction of NO with OZ-and HO2: a pulse radiolysis study. Free Rad. Biol. Med. 19:505–510.PubMedCrossRefGoogle Scholar
  57. Griffith, M.J., Liu, S., Curzen, N.P., Messent, M., and Evans, T.W.1995. In vivo treatment with endotoxin induces nitric oxide synthase in rat main pulmonary artery. Am. J. Physiol. 268:L509–L518.Google Scholar
  58. Groot, H. de, Hegi, U., and Sies, H. 1993. Loss of alpha-tocopherol upon exposure to nitric oxide or the sydnonimine SIN-1. FEBS Lett. 315:139–142.PubMedCrossRefGoogle Scholar
  59. Grozdanovic, Z., Baumgarten, H.G., and Brüning, G. 1992. Histochemistry of NADPH-diaphase, a marker for neuronal nitric oxide synthase, in the peripheral autonomic nervous system of the mouse. Neuroscience 48:225–235.PubMedCrossRefGoogle Scholar
  60. Gunasekar, P.G., Kanthhasamy, A.G., Borowitz, J.L., and Isom, G.E. 1995. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J. Neurochem. 65:2016–2021.PubMedCrossRefGoogle Scholar
  61. Guo, EH., De Raeve, H.R., Rice, T.W., Stuehr, D.J., Thunissen, EB.J.M., and Erzurum, S.C. 1995. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epthelium in vivo. Proc. Natl. Acad. Sci. USA 92:7809–7813.PubMedCrossRefGoogle Scholar
  62. Gurwitz, D., and Kloog, Y. 1998. Peroxynitrite generation might explain elevated glutamate and aspartate levels in multiple sclerosis cerebrospinal fluid. Eur. J. Clin. Invest. 28:760–761.PubMedCrossRefGoogle Scholar
  63. Gutierrez, H.H., Nieves, B., Chumley, R, Rivera, A., and Freeman, B.A. 1996. Nitric oxide regulation of superoxide-dependent lung injury: oxidant-protective actions of endogenously produced and exogenously administered nitric oxide. Free Rad. Biol. Med. 21:43–52.PubMedCrossRefGoogle Scholar
  64. Gutierrez, H.H., Pitt, B.R., Schwarz, M., Watkins, S.C., Lowenstein, C., Caniggia, I., Chumley, P., and Freeman, B.A. 1995. Pulmonary alveolar epithelial inducible NO synthase gene expression: regulation by inflammatory mediators. Am. J. Physiol. 268:L501–L508.PubMedGoogle Scholar
  65. Haberberger, R., Schemann, M., Sann, H., and Kummer, W. 1996. The innervation pattem of the pulmonary vascular diameter. J. Appl. Physiol. Google Scholar
  66. Haddad, I.Y., Pataki, G., Hu, P., Galliani, C., Beckman, J.S., and Matalon, S. 1994. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest. 94:2407–2413.PubMedCrossRefGoogle Scholar
  67. Halbower, A.C., Tuder, R.M., Franklin, W.A., Pollack, J.S., Förstermann, U., and Abman, S.H. 1994. Maturation-related changes in endothelial nitric oxide synthase immunolocalization in developing ovine lung. Am. J. Physiol. 267:L585–L591.PubMedGoogle Scholar
  68. Halliwell, B. 1997. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 411:157–160.PubMedCrossRefGoogle Scholar
  69. Hausladen, A., and Fridovich, I. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem 269:29405–29408.PubMedGoogle Scholar
  70. Hensley,K.,Maidt,M.L., Yu, Z., Sang, H., Markesbery, W. R. and Floyd, R.A. 1998. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. Neuroscience 18:8126–8132. Google Scholar
  71. Hibbs, J.B., Vavrin, Z., and Taintor, R.R. 1987. L-Arginine is required for the expression of the activated macrophage effector mechanism, causing selective metabolic inhibition in target-cells. J. Immunol. 138:550–565.PubMedGoogle Scholar
  72. Hislop, A.A., Springall, D.R., Buttery, L.D., Pollock, J.S., and Haworth, S.G. 1995. Abundance of endothelial nitric oxide synthase in newborn intrapulmonary arteries. Arch. Dis. Child. 73:F17–F21.CrossRefGoogle Scholar
  73. Hoffmann, G., Grote, J., Friedrich, F., Mutz, N., and Schobersberger, W. 1995. The pulmonary epithelial cell line L2 as inducible nitric oxide synthase expressing distal airway epithelial cell. Biochem. Biophys. Res. Commun. 217:575–583.PubMedCrossRefGoogle Scholar
  74. Hogg, N., Darley-Usmar, V.M., Wilson, M.T., and Moncada, S. 1993. The oxidation of alpha-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide. FEBS Leu. 326:199–203.CrossRefGoogle Scholar
  75. Hogg, N., Joseph, J., and Kalyanaraman, B.1994. The oxidation of alpha-tocop1eeerol and trolox by peroxynitrite. Arch. Biochem. Biophys. 314:153–158.PubMedCrossRefGoogle Scholar
  76. Hu, P., Ischiropoulos, H., Beckman, J.S., and Matalon, S. 1994. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am. J. Physiol. 266:L628–L634.PubMedGoogle Scholar
  77. Huie, R.E., and Padmaja, S. 1993. The reaction of NO with superoxide. Free Rad. Biol. Med. 18:195–199.Google Scholar
  78. Inoue, S., and Kawanishi, S. 1995. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett. 371:86–88.PubMedCrossRefGoogle Scholar
  79. Ischiropoulos, H., and al-Mehdi, A.B. 1995. Peroxynitrite-mediated oxidative protein modifications. FEBS Leu. 364:279–282.CrossRefGoogle Scholar
  80. Ischiropoulos, H., al-Mehdi, A.B., and Fisher, A.B. 1995. Reactive species in ischemic rat lung injury: contribution of peroxynitrite. Am. J. Physiol. 269:L158–L164.PubMedGoogle Scholar
  81. Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J.C., Smith, C.D., and Beckman, J.S. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed bysuperoxide dis-mutase. Arch. Biochem. Biophys. 298:431–437.PubMedCrossRefGoogle Scholar
  82. Ishida, H., Ichimori, K., Hirota, Y., Fukahori, M., and Nakazawa, H. 1996. Peroxynitrite-induced cardiac myocyte injury. Free Rad. Biol. Med. 20:343–350.PubMedCrossRefGoogle Scholar
  83. Jain, B., Lubinstein, I., Robbins, R.A., Leise, K.L., and Sisson, J.H. 1993. Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem. Biophys. Res. Commun. 191.83–88.PubMedCrossRefGoogle Scholar
  84. Janssens, S.P., Shimouchi, A., Quertermous, T., Bloch, D.B., and Bloch, K.D. 1992. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem. 267:14519–14522.PubMedGoogle Scholar
  85. Jorens, P.G., Van Overveld, EJ., Vermeire, P.A., Bult, H., and Herman, A.G. 1992. Synergism between interleukin-1 beta and interferon-gamma, an inducer of nitric oxide synthase, in rat lung fibroblasts. Eur. J. Pharmacol. 224:7–12.PubMedCrossRefGoogle Scholar
  86. Kanazawa, H., Shoji, S., Yamada, M., Fujii, T., Kawaguchi, T., Kudoh, S., Hirata, K., and Yoshikawa, J. 1997. Increased levels of nitric oxide derivatives in induced sputum in patients with asthma. J. Allergy Clin. Immunol. 99:624–629.PubMedCrossRefGoogle Scholar
  87. Kaur, H., and Halliwell, B. 1994. Evidence for nitric-oxide-mediated oxidative damage in chronic inflammation, nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 350:9–12.PubMedCrossRefGoogle Scholar
  88. Kawai, N., Bloch, D.B., Fillipov, G., Rabkina, D., Suen, H.C., Losty, P.D., Janssens, S.P., Zapol, W.M., de la Monte, S., and Bloch, K.D. 1995. Constitutive endothelial nitric oxide synthase gene expression is regulated during lung development. Am. J. Physiol. 268:L589–L595.PubMedGoogle Scholar
  89. Klimaschewski, L., Kummer, W, Mayer, B., Couraud, J.Y., Preissler, U., Philippin, B., and Heym, C. 1992. Nitric oxide synthase in cardiac nerve fibres and neurons of rat and guinea pig heart. Circ. Res. 71:1533–1537.PubMedCrossRefGoogle Scholar
  90. Knowles, R.G., Merrett, M., Salter, M., and Moncada, S. 1990. Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in rat. Biochem. J. 270:833–836.PubMedGoogle Scholar
  91. Kobzik, L., Bredt, D.S., Lowenstein, C.J., Drazen, J., Gaston, B., Sugarbaker, D., and Stamler, J.S. 1993. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am. J. Respir. Cell Mol. BioL 9: 371–377.PubMedGoogle Scholar
  92. Kooy, N.W., and Royall, J.A. 1994. Agonist-induced peroxynitrite production from endothelial cells. Arch. Biochem. Biophys. 310:352–359.PubMedCrossRefGoogle Scholar
  93. Kummer, W, Fischer, A., Kurkowski, R., and Heym, C. 1992a. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemisrty. Neuroscience 49:715–737.CrossRefGoogle Scholar
  94. Kummer, W., Fischer, A., and Lang, R.E. 1992b. Substance P and nitric oxide: participation in airway innervation. Regul. Peptides Sl-S92.Google Scholar
  95. Kummer, W., Fischer, A., Lang, R.E., Koesling, D., Mayer, B., and Olry, R. 1994. Nitric oxide and guanylyl cyclases: correlation with neuropeptides. Neuropeptides Respir. Med. 12:641–652.Google Scholar
  96. Kummer, W., Fischer, A., Mundel, P., Mayer, B., Hora, B., and Philippin, B. 1992c. Nitric oxide synthase in VIP-containing vasodilator nerve fibres in the guinea pig. Neuro. Rep. 3:653–655.Google Scholar
  97. Kumura, E., Yoshimine, T., Iwatsuki, K., Yamanaka, K., Tanaka, S., Hayakawa, T., Shiga, T., and Kosaka, H. 1996. Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats. Am. J. Physiol. 39:C748–C752.Google Scholar
  98. Kuriyama, K., and Ohkuma, S. 1995. Role of nitric oxide in central synaptic transmission: effects on neurotransmitter release. Jpn. J. Pharmacol. 69:1–8.PubMedCrossRefGoogle Scholar
  99. Lafon-Cazal, M., Culcasi, M., Gaven, F., Pietri, S., and Bockaert, J. 1993. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDAinduced cell death in cerebellar granule cells. Neuropharmacology 32:12591266.Google Scholar
  100. Lamas, S., Marsden, P.A., Li, G.K., Tempst, P., and Michel, T. 1992. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive molecular isoform. Proc. Natl. Acad. Sci. USA 89:6348–6352.PubMedCrossRefGoogle Scholar
  101. Li, C.G., and Rand, M.J. 1991. Evidence that part of the NANC relaxant response of guinea pig trachea to electrical field stimulation is mediated by nitric oxide. Br. J. Pharmacol. 102:91–94.PubMedCrossRefGoogle Scholar
  102. Liew, EY., Li, Y., and Millott, S. 1990. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J. Immunol. 145:4306–4310.PubMedGoogle Scholar
  103. Liu, R.H., and Hotchkiss, J.H. 1995. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat. Res. 339:73–89.PubMedCrossRefGoogle Scholar
  104. Loesch, A., and Burnstock, G. 1995. Electroimmunocytochemical localization of endothelial and neuronal isoforms of nitric oxide synthase in rat cerebral basilardely artery. Acta Neurobiol. Exp. 55:45.Google Scholar
  105. Loesch, A., and Burnstock, G, 1996. Ultrastructural localization of nitric oxide synthase and endothelin in rat pulmonary artery and vein during postnatal development and ageing. Cell Tissue Res. 283:355–365.PubMedCrossRefGoogle Scholar
  106. Lowenstein, C.J., Glatt, C.S., Bredt, D.S., and Snyder, S.H. 1992. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc. Natl. Acad. Sci. USA 89:6711–6715.PubMedCrossRefGoogle Scholar
  107. Lyons, C.R., Orloff, G.J., and Gunningham, J.M. 1992. Molecular cloning and functional expression of an inducible nitirc oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267:6370–6374.PubMedGoogle Scholar
  108. MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Trumbauer, M., Stevens, K., Xie, Q., Sokol, K., and Hutchinson, N. 1995. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641–650.PubMedCrossRefGoogle Scholar
  109. McCall, T.B., Boughton-Smith, N.K., Palmer, R.M.J., Whittle, B.J.R., and Moncada, S. 1989. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem. J. 261:293–296.PubMedGoogle Scholar
  110. McCord, J.M., and Fridovich, I. 1968. The reduction of cytochrome c by milk xanthine oxidase. J. Biol. Chem. 243:5753–5760.PubMedGoogle Scholar
  111. Miller, M.J.S., Thompson, J.H., Zhang, X.J., Sadowska-Krowicka, H., Kakkis, J.L., Munshi, U.K., Sandoval, M., Rossi, J.L., Eloby-Childress, S., Beckman, J.S., Ye, Y.Z., Rodi, C.P., Manning, ET., Currie, M.G., and Clark, D.A. 1995. Role of inducible nitric oxide synthase expression and peroxynitrite formation in guinea pig ileitis. Gastroenterology 109:1475–1483.PubMedCrossRefGoogle Scholar
  112. Moncada, S., Palmer, R.M.J., and Higgs, E.A. 1989. Biosynthesis of nitric oxide from t,-arginine: a pathway for the regulation of cell function and communication. Biochem. Pharmacol. 38:1709–1715.PubMedCrossRefGoogle Scholar
  113. Moncada, S., Radomski, M.W., and Palmer, R.M.J. 1988. Endothelium derived relaxing factor identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem. Pharmacol. 37:2495–2501.PubMedCrossRefGoogle Scholar
  114. Morrison, K.J., Gao, Y., and Vanhoutte, P.M. 1990. Epithelial modulation of airway smooth muscle. Am. J. Physiol. 258:L254–L262.PubMedGoogle Scholar
  115. Muijsers, R.B.R., Folkerts, G., Henricks, P.A.J., Sadeghi-Hashjin, G., and Nijkamp, F.P. 1997. Peroxynitrite: a two faced metabolite of nitric oxide. Life Sci. 60:1833–1845.PubMedCrossRefGoogle Scholar
  116. Muijsers, R.B.R., Folkerts, G., Van den Worm, E., Beukelman, C.J., Postma, D.S., and Nijkamp, ER. 1998. Inhibition of peroxynitrite formation by apocynin in a murine macrophage cell-line. Br. J. Pharmacol. 123:41p.Google Scholar
  117. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB 6:3051–3064.Google Scholar
  118. Nijkamp, ER, and Folkerts, G. 1995. Nitric oxide and bronchial hyperresponsiveness. Arch. Int. Pharmacodyn. Ther. 329:81–96.PubMedGoogle Scholar
  119. Nijkamp, F.P., Van der Linde, H.J., and Folkerts, G. 1993. Nitric oxide synthesis inhibitors induce airway hyperresponsiveness in the guinea pig in vivo and in vitro. Am. Rev. Resp. Dis. 148:727–734.PubMedCrossRefGoogle Scholar
  120. Nishida, K., Harrison, D.G., Navas, J.P., Fischer, A.A., Dockery, S.P., Uematsu, M., Nerem, R.M., Alexander, R.W., and Murphy, T.J. 1992. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J. Clin. Invest. 90:2092–2096.PubMedCrossRefGoogle Scholar
  121. Norht, A.J., Star, R.A., Brannon, T.S., Ujiie, K., Wells, L.B., Lowenstein, C.J., Snyder, S.H., and Shaul, P.W. 1994. Nitric oxide type I and type III gene expression are developmentally regulated in rat lung. Am. J. Physiol. 266:L635–L641.Google Scholar
  122. O’Brien, A.J., Young, H.M., Povey, J.M., and Furness, J.B. 1995. Nitric oxide synthase is localized predominantly in the Golgi apparatus and cytoplasmatic vesicles of vascular endothelial cells. Histochemistry 103:221–225.PubMedCrossRefGoogle Scholar
  123. Olry, R., Mayer, B., and Kummer, W. 1994. Nitric oxide synthase in the pre-and post-ganglionic axis of the sympathetic nervous system in the guinea pig. In: Biology of Nitric Oxide (eds. S. Moncada, M. Feelisch, R. Busse, and E.A. Higgs), pp. 330–334. Portland Press, London.Google Scholar
  124. Packer, M.A., and Murphy, M.P. 1994. Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporin A. FEBS Lett. 345:237–240.PubMedCrossRefGoogle Scholar
  125. Packer, M.A., and Murphy, M.P. 1995. Peroxynitrite formed by simultaneous nitric oxide and superoxide generation causes cyclosporin-A-sensitive mitochondrial calcium effux and depolarisation. Eur. J. Biochem. 234:231–239.PubMedCrossRefGoogle Scholar
  126. Packer, M.A., Scarlett, J.L., and Martin, S.W. 1998. Peroxynitrite: a biologically significant oxidant. Gen. Pharmacol. 31:179–186.PubMedCrossRefGoogle Scholar
  127. Palmer, R.M.J., Ashton, D.S., and Moncada, S. 1988. Vascular endothellial cells synthesize nitric oxide from L-arginine. Nature 333:664–666.PubMedCrossRefGoogle Scholar
  128. Palmer, R.M.J., Ferrige, A.G., and Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.PubMedCrossRefGoogle Scholar
  129. Palmer, R.M.J., Ress, D.D., Ashton, D.S., and Moncada, S. 1988. L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 153:1251–1256.PubMedCrossRefGoogle Scholar
  130. Pearson, P.J., Lin, P.J., and Schaff, H.V. 1991. Production of endothelium-derived contracting factor is enhanced after coronary reperfusion. Ann. Thorac. Surg. 51:788–793.PubMedCrossRefGoogle Scholar
  131. Pfeiffer, C.J., and Qiu, B.S. 1995. Effects of chronic nitric oxide synthase inhibition on TNB-induced colitis in rats. J. Pharm. Pharmacol. 47:827–832.PubMedCrossRefGoogle Scholar
  132. Phelps, D.T., Ferro, T.J., Higgins, P.J., Shankar, R., Parker, D.M., and Johnsin, A. 1995. TNF-alpha induces peroxynitrite-depletion of lung endothelial glutathione via protein kinase C. Am. J. Physiol. 269:L551–L559.PubMedGoogle Scholar
  133. Pryor, W.A., and Squadrito, G.L. 1995. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268:L699–L722.PubMedGoogle Scholar
  134. Punjabi, C.J., Laskin, J.D., Pendino, K.J., Goller, N.L., Durham, S.K., and Laskin, L. 1994. Production of nitric oxide by rat type II pneumocytes: increased expression of inducible nitric oxide synthase following inhalation of a pulmonary irritant. Am. J. Respir. Cell Mol. Biol. 11:165–172.PubMedGoogle Scholar
  135. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. 1991a. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:481–487.CrossRefGoogle Scholar
  136. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. 1991b. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.Google Scholar
  137. Radi, R., Rodriguez, M., Castro, L., and Telleri, R. 1994. Inhibition of mitochondr-ial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308:89–95.PubMedCrossRefGoogle Scholar
  138. Reiter, R.J. 1998. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56:359–384.PubMedCrossRefGoogle Scholar
  139. Reiter, R.J., Melchiorri, D., Sewerynek, E., Poeggeler, B., Barlow-Walden, L., Chuang, J., Ortiz, G.G., and Acuna-Castroviejo, D. 1995. A review of the evidence supporting melatonin’s role as an antioxidant. J. Pineal Res. 18:1–11.PubMedCrossRefGoogle Scholar
  140. Rengasamy, A., Xue, C., and Johns, R.A. 1994. Immunohistochemical demonstration of a paracrine role of nitric oxide in bronchial function. Am. J. Physiol. 267:L704–L711.PubMedGoogle Scholar
  141. Robbins, R.A., Barnes, P.J., Springall, D.R., Warren, J.B., Kwon, O.J., Buttery, L.D., Wilson, A.J., Geller, D.A., and Polak, J.M. 1994a. Expression of inducible nitric oxide in human lung epithelial cells. Biochem. Biophys. Res. Commun. 203:209–218.CrossRefGoogle Scholar
  142. Robbins, R.A., Springall, D.R., Warren, J.B., Kwon, O.J., Buttery, L.D.K., Wilson, A.J., Adcock, I.M., Riveros-Moreno, V., Moncada, S., Polak, J., and Barnes, P.J. 1994b. Inducible nitric oxide synthase is increased in murine lung epithelial cells by cytokine stimulation. Biochem. Biophys. Res. Commun. 198:835–843.CrossRefGoogle Scholar
  143. Rodenas, J., Mitjavila, M.T., and Carbonell, T. 1995. Stimultaneous generation of nitric oxide and superoxide by inflammatory cells in rats. Free Rad. Biol. Med. 18:869–875.PubMedCrossRefGoogle Scholar
  144. Royall, J.A., Kooy, N.W., and Beckman, J.S. 1995. Nitric oxide-related oxidants in acute lung injury. New Horiz. 3:113–122.PubMedGoogle Scholar
  145. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirrk, M., and Freeman, B.A. 1994. Nitric oxide regulation of superoxide and peroxynitritedependent lipid peroxidation. Formation of novel nitrogen containing oxidized lipid derivatives. J. Biol. Chem. 269:26066–26075.PubMedGoogle Scholar
  146. Ruggiero, D.A., Mtui, K., Otake, K., and Anwar, M. 1996. Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide synthase as a membrane-permeant neuronal messeger. J. Comp. Neurol. 364:51–67.PubMedCrossRefGoogle Scholar
  147. Sadeghi-Hashjin, G., Folkerts, G., Henricks, RAJ., Muijsers, R.B.R., and Nijkamp, F.P. 1998. Peroxynitrite in airway diseases. Clin. Exp. Allergy 28:1464–1473.PubMedCrossRefGoogle Scholar
  148. Sadeghi-Hashjin, G., Folkerts, G., Henricks, EA.J., Verheyen, A.K.C.P., van der Linde, H.J., van Ark, I., Coene, A., and Nijkamp, F.P. 1996. Peroxynitrite induces airway hyperresponsiveness in guinea pigs in vitro and in vivo. Am. J. Respir. Crit. Care Med. 153:1697–1701.PubMedGoogle Scholar
  149. Saleh, D., Ernst, P., Lim, S., Barnes, P.J., and Giaid, A. 1998. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB 12:929–937.Google Scholar
  150. Salgo, M.G., Squadrito, G.L., and Pryor, W.A. 1995. Peroxynitrite causes apoptosis in rat thymocytes. Biochem. Biophys. Res. Commun. 215:1111–1118.PubMedCrossRefGoogle Scholar
  151. Salman-Tabcheh, S., Guerin, M.C., and Torreilles, J. 1995. Nitration of tyrosylresidues from extra-and intracellular proteins in human whole blood. Free Rad. Biol. Med. 19:695–698.PubMedCrossRefGoogle Scholar
  152. Saran, M., and Bors, W. 1994. Signalling by 02 and NO: how far can either radical, or any specific reaction product, transmit a message under in vivo conditions? Chem. Biol. Int. 90:35–45.CrossRefGoogle Scholar
  153. Sato, K., Miyakawa, K., Takeya, M., Hattori, R., Yui, Y., Sunamoto, M., Ichimori, Y, Ushio, Y., and Takahashi, K. 1995 Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in reversible endotoxic shock studied by a novel monoclonal antibody against rat iNOS. 57(1):36–44.Google Scholar
  154. Sawada, H., Kawamura, T., Shimohama, S., Akaike, A., and Kimura, J. 1996. Different mechanisms of glutamate-induced neuronal death between dopaminergic and non-dopaminergic neurons in rat mesencephalic culture. J. Neurosci. Res. 43:503–510.PubMedCrossRefGoogle Scholar
  155. Schulz, R., and Wambolt, R. 1995. Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc. Res. 30:432–439.PubMedGoogle Scholar
  156. Seo, H.G., Takata, I., Nakamura, M., Tatsumi, H., Suzuki, K., Fujii, J., and Taniguchi, N. 1995. Induction of nitric oxide synthase and concomitant suppression of superoxide dismutases in experimental colitis in rats. Arch. Biochem. Biophys. 324:41–47.PubMedCrossRefGoogle Scholar
  157. Shaul, P., North, A.J., Wu, L.C., Wells, L.B., Brannon, T.S., Lau, S., and Michel, T.B. 1994. Endothelial nitric oxide synthase is expressed in cultured human bronchial epithelium. J. Clin. Invest. 94:2231–2236.PubMedCrossRefGoogle Scholar
  158. Sherman, M.P., Griscavage, J.M., and Ignarro, L.J. 1992. Nitric oxide-mediated neuronal injury in multiple sclerosis. Med. Hypotheses 39:143–146.PubMedCrossRefGoogle Scholar
  159. Shimosegawa, T., and Toyota, T. 1994. NADPH-or diaphorase as a marker for nitric oxide synthase in neurons of the guinea pig respiratory tract. Am. J. Respir. Crit. Care Med. 150:1402–1410.PubMedGoogle Scholar
  160. Simons, J.M., t Hart, B.A., van Dijk, H., and Labadie, R.P. 1990. Metabolic activation of natural phenols into selective oxidative burst antagonists by activated human neutrophils. Free Rad. Biol. Med. 8:251–258.PubMedCrossRefGoogle Scholar
  161. Snyder, S.H., and Bredt, D.S. 1991. Nitric oxide as a neuronal messenger. Trends Pharmacol. Sci. 12:125–127.PubMedCrossRefGoogle Scholar
  162. Southan, G.J., Salzman, A.L., and Szabo, C. 1996. Potent inhibition of the isoform of nitric oxide synthase by aminoethylisoselenourea and related compounds. Life Sci. 58:1139–1148.PubMedCrossRefGoogle Scholar
  163. Southan, G.J., and Szabo, C. 1996. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 51:383–394.PubMedCrossRefGoogle Scholar
  164. Stretton, D. 1991. Nonadrenergic, noncholinergic neural control of the airways. Clin. Exp. Pharmacol. Pathol. 18:675–684.CrossRefGoogle Scholar
  165. Su, W.Y., Day, B.J., Kang, B.H., Crapo, J.D., Huang, Y.C.T., and Chang, L.Y. 1996. Lung epithelial cell-released nitric oxide protects against PMN-mediated cell injury. Am. J. Physiol. 15:L581–L586.Google Scholar
  166. Sutherland, K., Mahoney, J.R., Coury, A.J., and Eaton, J.W. 1993. Degradation of biomaterials by phagocyte-derived oxidants. J. Clin. Invest. 92:2360–2367.PubMedCrossRefGoogle Scholar
  167. Szabo, C. 1996. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 6:1–10.CrossRefGoogle Scholar
  168. Szabo, C., and Salzman, A.L. 1995. Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages. Biochem. Biophys. Res. Commun. 209:739–743.PubMedCrossRefGoogle Scholar
  169. Szabo, C., Salzman, A.L., and Ischiropoulos, H. 1995. Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett. 363:235–238.PubMedCrossRefGoogle Scholar
  170. Szabo, C., Zingarelli, B., O’Connor, M., and Salzman, A.L. 1996. DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA 93:1753–1758.PubMedCrossRefGoogle Scholar
  171. Thomae, K.R., Geller, D.A., Billiar, T.R., Davies, E, Pitt, B.R., Simmons, R.L., and Nakayama, D.K. 1993. Antisense oligodeoxynucleotide to inducible nitric oxide synthase muscle cells in culture. Surgery 114:272–277.PubMedGoogle Scholar
  172. Turnage, R.H., Kadesky, K.M., Bartula, L., and Myers, S.I. 1995. Intestinal reperfusion up-regulates inducible nitric oxide synthase activity within the lung. Surgery 118:288–293.PubMedCrossRefGoogle Scholar
  173. Villiotou, V., and Deliconstantinos, G. 1995. Nitric oxide, peroxynitrite and nitroso compounds formation by ultraviolet A (UVA) irradiated human squamous cell carcinoma: potential role of nitric oxide in cancer prognosis. Anticancer Res. 15:931–942.PubMedGoogle Scholar
  174. Vliet, A. van der, Eiserich, J.E., Halliwell, B., and Cross, C.E. 1995a. Modification of aromatic amino acids by reactive nitrogen species. Biochem. Soc. Trans. 23:237S.Google Scholar
  175. Vliet, A. van der, Eiserich, J.P., O’Neill, C.A., Halliwell, B., and Cross, C.E. 1995b. Tyrosine modification by reactive nitrogen species: a closer look. Arch. Biochem. Biophys. 319:341–349.CrossRefGoogle Scholar
  176. Vliet, A. van der, O’Neill, C.A., Halliwell, B., Cross, C.E., and Kaur, H. 1994a. Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett. 339: 89–92.CrossRefGoogle Scholar
  177. Vliet, A. van der, Smith, D., O’Neill, C.A., Kaur, H., Darley-Usmar, V., Cross, C.E., and Halliwell, B. 1994b. Interactions of peroxynitite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem. J. 303: 295–301.Google Scholar
  178. Ward, J.K., Barnes, EJ., Springall, D.R., Abelli, L., Tadjkarimi, S., Yacoub, M.H., Polak, J.M., and Belvisi, M.G. 1995. Distribution of human i-NANC bronchodilator and nitric oxide-immunoreactive nerves. Am. J. Respir. Cell Mol. Biol. 13:175–184.PubMedGoogle Scholar
  179. Warner, R.L., Paine, R., Christensen, EJ., Marletta, M.A., Richards, M.K., Wilcosen, S.E., and Ward, P.A. 1995. Lung sources and cytokine requirements for in vivo expression of inducible nitic oxide synthase. Am. J. Respir. Cell Mol. Biol. 12:649–661.PubMedGoogle Scholar
  180. Wei, X.Q., Charles, LG., Smith, A., Ure, J., Feng, G.J., Huang, EE, Xu, D., and Muller, W. 1995. Altered immune responses in mice lacking inducible nitric-oxide synthase. Nature 375:408–411.PubMedCrossRefGoogle Scholar
  181. White, A.C., Maloney, E.K., Boustani, M.R., Hassoun, P.M., and Fanburg, B.L. 1995. Nitric oxide increases cellular glutathione levels in rat lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 13:442–448.PubMedGoogle Scholar
  182. White, C.R., Brock, T.A., Chang, L.Y., Crapo, J., Briscoe, P., Ku, D., Bradley, W.A., Gianturco, S.H., Gore, J., and Freeman, B.A. 1994. Superoxide and peroxynitrite in athosclerosis. Proc. Natl. Acad. Sci. USA 91:1044–1048.PubMedCrossRefGoogle Scholar
  183. Wizemann, T.M., Gardner, C.R., Laskin, J.D., Quinones, S., Durham, S.K., Goller, N.L., Ohnishi, S.T., and Laskin, D.L. 1994. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J. Leukocyte Biol. 56:759–768.PubMedGoogle Scholar
  184. Xie, Q., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T., and Nathan, C. 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228.PubMedCrossRefGoogle Scholar
  185. Xue, C., Botkin, S.J., and Johns, R.A. 1996. Localization of endothelial NOS at the basal microtubule membrane in ciliated epithelium of rat lung. J. Histochem. Cytochem. 44:463–471.PubMedCrossRefGoogle Scholar
  186. Xue, C., Rengasamy, A., Le-Cras, T.D., Koberna, P.A., Dailey, G.C., and Johns, R.A. 1994. Distribution of NOS in normoxic vs. hypoxic rat lung: upregulation of chronic hypoxia. Am. J. Physiol. 267:L667–L678.PubMedGoogle Scholar
  187. Yan, Z.Q., Hansson, G.K., Skoogh, B.E., and Lotvall, J.O. 1995. Induction of nitric oxide synthase in a model of allergic occupational asthma. Allergy 50:760–764.PubMedCrossRefGoogle Scholar
  188. Yan, Z.Q., Kramer, K., Bast, A., and Timmerman, H. 1994. The involvement of nitric oxide synthase in the effect of histamine on guinea-pig airway smooth muscle tone in vitro. Agents Actions 41:C111–C112.PubMedCrossRefGoogle Scholar
  189. Yeadon, M., and Price, R. 1995. Induction of calcium-independent nitric oxide synthase by allergen challenge in sensitized rat lung in vivo. Br. J. Pharmacol. 116: 2545–2546.PubMedCrossRefGoogle Scholar
  190. Yermilov, V., Rubio, J., and Ohshima, H. 1995. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 376:207–210.PubMedCrossRefGoogle Scholar
  191. Zhu, L., Gunn, C., and Beckman, J.S. 1992. Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298:452–457.PubMedCrossRefGoogle Scholar
  192. Zingarelli, B., Cuzzocrea, S., Zsengeller, Z., Salzman, A.L., and Szabo, C. 1997. Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthase. Cardiovasc. Res. 36:205–215.PubMedCrossRefGoogle Scholar
  193. Zingarelli, B., O’Connor, M., Wong, H., Salzman, A.L., and Szabo, C. 1996. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J. Immunol. 156:350–358.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gert Folkerts
  • Axel Fischer
  • Richard B. R. Muijsers
  • Frans P. Nijkamp

There are no affiliations available

Personalised recommendations