Skip to main content

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 1))

  • 70 Accesses

Abstract

Intravenous anesthetics in either bolus or constant infusion may be used to produce induction or maintenance of anesthesia. Examples of these anesthetics are ultra-short-acting thiobarbiturates, propofol, etomidate, and ketamine. Of the four, propofol and ketamine possess significant pulmonary effects. Propofol, a di-isopropylphenol derivative, has been used for the induction of general anesthesia and is considered to be a short-acting anesthetic agent with a rapid onset of action and rapid elimination (Smith et al. 1994). Propofol initially decreases the respiratory rate and has an immediate temporary hypotensive action secondary to a reduction in total peripheral resistance. Propofol can produce a decrease in the ventilatory response to hypoxia, suggesting the need for supplementary oxygen in all uses of propofol (Smith et al. 1994). Propofol decreases both systemic arterial and pulmonary arterial pressures without causing a significant reduction in cardiac output in normal humans and children with congenital heart disease (Smith et al. 1994; Williams et al. 1994). The decreases in blood pressure associated with propofol are secondary to a reduction in both systemic and pulmonary vascular resistance; however, little if any shunt has been demonstrated (Mendoza et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla SS, Laravuso RB,& Will JA. 1994. Mechanisms of inhibitory effects of ketamine on guinea pig isolated pulmonary artery. Anesth Analg 78:11–22.

    Article  Google Scholar 

  • Baum V. 1993. Distinctive effects of three intravenous anesthetics on the inward rectifier and the delayed rectifier potassium currents in myocardium: implications for the mechanism of action. Anesth Analg 76:18–23.

    PubMed  CAS  Google Scholar 

  • Bulijubasic N, Marijic J, Berczi V, Supan D, Kampine J, & Bosnjak Z. 1996. Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells. Anesthesiology 85:1092–1099.

    Article  Google Scholar 

  • Chang K, & Davis R. 1993. Propofol produces endothelium-independent vasodilation and may act as a calcium channel blocker. Anesth Analg 76:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Cheng D, Dewitt B, McMahon T, & Kadowitz P. 1994. Comparative effects of L-NNA and alkyl esters of L-NNA on pulmonary vasodilator responses to acetylcholine, bradykinin, and substance P. AmJPhysiol 266:H2416–H2423.

    CAS  Google Scholar 

  • Coughlan MG, Flynn NM, Kenny D, et al. 1992. Differential relaxant effect of high concentrations of intravenous anesthetics on endothelin-constricted proximal and distal canine coronary arteries. Anesth Analg 74:378–383.

    Article  PubMed  CAS  Google Scholar 

  • Denson DD, & Eaton DC. 1994. Ketamine inhibition of large conductance calcium-activated potassium channels is modulated by intracellular calcium. Am J Physiol 267:C1452–1458.

    Google Scholar 

  • Denson DD, Duchatelle P, & Eaton DC. 1994. The effect of racemic ketamine on the large conductance Ca(+2)-activated potassium (BK) channels in GH3 cells. Brain Res 638:61–68.

    Article  PubMed  CAS  Google Scholar 

  • Denson DD, Worrell RT, & Eaton DC. 1996. A possible role for phospholipase A2 in the action of general anesthetics. Am J Physiol 270:C636–644.

    Google Scholar 

  • Erdemli O, Gumusel B, & Sahin-Erdemli I. 1995. The pulmonary vascular response to propofol in the isolated perfused rat lung. Eur J Anaesthesiol 6:617–623.

    Google Scholar 

  • Feng C, Cheng D, Kaye A, Kadowitz P, & Nossaman B. 1994. Influence of N-LAME, LY83583, glibenclamide and LI58809 on pulmonary circulation. Eur J Pharm 263:133–140.

    Article  CAS  Google Scholar 

  • Gacar N, Gok S, Kalyoncu I, Ozen I, Suokan N, & Akturk G. 1995. The effect of endothe-lium on the response to propofol on bovine coronary artery rings. Acta Anaesthesiol Scand 39:1080–1083.

    Article  PubMed  CAS  Google Scholar 

  • Gelb A, Zhang C, & Hamilton J. 1996. Propofol induces dilation and inhibits constriction in guinea pig basilar arteries. Anesth Analg 83:472–476.

    PubMed  CAS  Google Scholar 

  • Gratton JP, Maurice MC, Rae GA, & D’Orleans-Juste P. 1995a. Pharmacological properties of endothelins and big endothelins in ketamine/xylazine or urethane anesthetized rats. Am J Hypertens 8:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  • Gratton JP, Rae GA, Claing A, et al. 1995b. Different pressor and bronchoconstrictor properties of human big-endothelin-1, 2 (1-38) and 3 in ketamine/xylazine-anaesthetized guinea-pigs. Br J Pharmacol 114:120–126.

    Article  Google Scholar 

  • Greene HL, Hazlett D, & Demaree R. 1976. Relationship between intralipid-induced hy-perlipemia and pulmonary function. Am J Clin Nutr 29:121–135.

    Google Scholar 

  • Hirshman CA, Downes H, Farbood A, & Bergman NA. 1979. Ketamine block of bron-chospasm in experimental canine asthma. Br J Anesth 57:713–718.

    Google Scholar 

  • Kanmura Y, Kajikuri J, Itoh T, & Yoshitake J. 1993. Effects of ketamine on contraction and synthesis of inositol 1,4,5-trisphosphate in smooth muscle of the rabbit mesenteric artery. Anesthesiology 79:571–579.

    Article  PubMed  CAS  Google Scholar 

  • Kanmura Y, Missiaen L, & Casteels R. 1996. The effects of ketamine on calcium movements in A7r5 vascular smooth muscle cells. Anesth Analg 83:1105–1109.

    PubMed  CAS  Google Scholar 

  • Kaye A, Ibrahim I, Kadowitz P, & Nossaman B. 1996a. Analysis of responses to pentoxi-fylline in the pulmonary vascular bed of the cat. Crit Care Med 24:263–261.

    Article  PubMed  CAS  Google Scholar 

  • Kaye A, Feng C, Smith D, Kang B, Kadowitz P, & Nossaman B. 1996b. Analysis of responses of pentoxifylline in the pulmonary vascular bed of the rat. Am J Ther 3:640–646.

    Article  PubMed  Google Scholar 

  • Ko S, Lee S, & Han Y, et al. 1997. Blockade of myocardial ATP-sensitive potassium channels by ketamine. Anesthesiology 57:68–74.

    Article  Google Scholar 

  • Kreuscher H, & Gauch H. 1967. The effect of phencylidine derivatives ketamine (CI 581) on the cardiovascular system of the man. Anaesthesist 16:229–233.

    PubMed  CAS  Google Scholar 

  • Lee TS, & Hou X. 1995. Vasoactive effects of ketamine on isolated rabbit pulmonary arteries. Chest 107:1152–1155.

    Article  PubMed  CAS  Google Scholar 

  • Lippton HL, Hao Q, & Hyman A. 1992. L-NAME enhances pulmonary vasoconstriction without inhibiting EDRF-dependent vasodilation. J Appl Physiol 75:2432–2439.

    Google Scholar 

  • Magnelli V, Nobile M, & Maestrone E. 1992. K+ channels in pel2 cells are affected by propofol. Pflugers Arch 420:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Maruyama J, Yokochi A, Muneyuki M, & Miyasaka K. 1995. Vasodilatory effects of ketamine on pulmonary arteries in rats with chronic hypoxic pulmonary hypertension. Anesth Analg 80:786–192.

    PubMed  CAS  Google Scholar 

  • Mendoza CU, Suarez M, Castaneda R, Hernandez A, & Sanchez R. 1992. Comparativeamp; study between the effects of total intravenous anesthesia with propofol and balanced anesthesia with halothane on the alveolar-arterial oxygen tension difference and on the pulmonary shunt. Arch Med Res 23:139–142.

    PubMed  CAS  Google Scholar 

  • Miyawaki I, Nakamura K, Terasako K, Toda H, Kakuyama M, & Mori K. 1995. Modification of endothelium-dependent relaxation by propofol, ketamine, and midazolam. Anesth Analg 81:414–419.

    Google Scholar 

  • Moore P, Nguyen D, Boldy R, & Reitan J. 1994. Comparative effects of nitric oxide on the coronary vasomotor responses to etomidate, propofol, and thiopental in anesthetized dogs. Anesth Analg 79:439–446.

    PubMed  CAS  Google Scholar 

  • Moreno L, Martinez-Cuesta M, Muedra V, Beltran B, & Esplugues J. 1997. Role of en-dothelium in the relaxation induced by propofol and thiopental in isolated arteries from man. J Pharm Pharmacol 49:430–432.

    Article  PubMed  CAS  Google Scholar 

  • Mozrzymas J, Teisseyre A, & Vittur F. 1996. Propofol blocks voltage-gated potassium channels in human T lymphocytes. Biochem Pharm 52:843–849.

    Article  PubMed  CAS  Google Scholar 

  • Naeije R, Lejeune P, Leeman M, Melot C, & Deloof T. 1989. Effects of propofol on pulmonary and systemic arterial pressure-flow relationships in hyperoxic and hypoxic dogs. Br J Anesth 62:532–539.

    Article  CAS  Google Scholar 

  • Nishiwaki K, Nyhan D, Rock P, Desai P, Peterson W, Pribble C, & Murray P. 1992. N W-l-nitro-/-arginine and pulmonary vascular-flow relationship in conscious dogs. Am J Physiol 262:m331-H1331.

    Google Scholar 

  • Olcese R, Usai C, Maestrone E, & Nobile M. 1994. The general anesthetic propofol inhibits transmembrane calcium current in chick sensory neurons. Anesth Analg 78: 955–960.

    Article  PubMed  CAS  Google Scholar 

  • Park W, Lynch C, & Johns R. 1992. Effects of propofol and thiopental in isolated rat aorta and pulmonary artery. Anesthesiology 77: 956–963.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen CM, Thirstrup S, & Nielsen-Kudsk JE. 1993. Smooth muscle relaxant effects of propofol and ketamine in isolated guinea-pig trachea. Eur J Pharmacol 238:75–80.

    Article  PubMed  CAS  Google Scholar 

  • Petros A, Bogle R, & Pearson J. 1993. Propofol stimulates nitric oxide release from cultured porcine aortic endothelial cells. Br J Pharmacol 109:6–7.

    Article  PubMed  CAS  Google Scholar 

  • Platt OS, Thorington BD, & Brambilla DJ. 1991. Pain in sickle cell disease: rates and risk factors. N Engl J Med 325:11–15.

    Article  PubMed  CAS  Google Scholar 

  • Ratz PH, Callahan PE, & Lattanzio FA Jr. 1993. Ketamine relaxes rabbit femoral arteries by reducing [Ca2+]; and phospholipase C activity. Eur J Pharmacol 236:433–441.

    Article  PubMed  CAS  Google Scholar 

  • Reich DL, & Silvay G. 1989. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anesth 36:186–197.

    Article  PubMed  CAS  Google Scholar 

  • Rich G, Roos C, Anderson S, Daugherty M, & Uncles D. 1994. Direct effects of intravenous anesthetics on pulmonary vascular resistance in the isolated rat lung. Anesth Analg 78:961–966.

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Hirota K, Matsuki A, et al. 1997. The relaxant effect of ketamine on guinea pig airway smooth muscle is epithelium-independent. Anesth Analg 84:641–647.

    PubMed  CAS  Google Scholar 

  • Smith I, White P, Natahnson M, & Gouldson R. 1994. Propofol: an update on its clinical use. Anesthesiology 81:1005–1043.

    Article  PubMed  CAS  Google Scholar 

  • Takeshita H, Okuda Y, & Sari A. 1972. The effects of ketamine on cerebral circulation and metabolism in man. Anesthesiology 36:69–15.

    Article  PubMed  CAS  Google Scholar 

  • Tweed WA, Minuck MS, & Mymin D. 1972. Circulatory response to ketamine anesthesia. Anesthesiology 37:613–619.

    Article  PubMed  CAS  Google Scholar 

  • Uezono S, & Clarke WR. 1995. The effect of propofol on normal and increased pulmonary vascular resistance in isolated perfused rabbit lung. Anesth Analg 80:577–582.

    PubMed  CAS  Google Scholar 

  • Williams G, Hanson K, Geiduschek J, Jones T, Baptiste B, & Morray J. 1994. Systemic and pulmonary vascular effects of propofol in children with congenital heart disease. Anes thesiology 81: A1372.

    Google Scholar 

  • Wilson LE, Hatch DJ, & Rehder K. 1993. Mechanisms of the relaxant action of ketamine on isolated porcine trachealis muscle. Br J Anaesth 77:544–550.

    Article  Google Scholar 

  • Yamazaki M, Ito Y, Kuze S, et al. 1992. Effects of ketamine on voltage-dependent Ca2+ currents in single smooth muscle cells from rabbit portal vein. Pharmacology 45:162–169.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Momose Y, Shakunaga K, et al. 1995. The vasodilatory effects of ketamine on isolated rabbit portal veins. Pharmacol Toxicol 76:3–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaye, A.D., Nossaman, B.D., Kadowitz, P.J. (2000). Intravenous Anesthetics in the Pulmonary Circulation. In: Kadowitz, P.J., McNamara, D.B. (eds) Nitric Oxide and the Regulation of the Peripheral Circulation. Nitric Oxide in Biology and Medicine, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1326-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1326-0_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7095-9

  • Online ISBN: 978-1-4612-1326-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics