Nitric Oxide and Hypertension

  • Roberto Zatz
  • Christine Baylis
Part of the Nitric Oxide in Biology and Medicine book series (NOBM, volume 1)

Abstract

Since the pioneering work of Furchgott and Zawadzki (1980), it has become increasingly clear that the vascular endothelium plays a key role in the regulation of the cardiovascular system. The discovery in 1987 that nitric oxide (NO) accounts for the vasorelaxing action of the endothelium (Ignarro et al. 1987; Palmer et al. 1987), opening the possibility of specifically inhibiting NO synthesis, greatly enlarged our understanding of endothelial physiology and gave rise to a vast new area of biological knowledge: NO physiology.

Keywords

Angiotensin Cardiol Acetylcholine Verapamil Renin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnal JF, Warin L, & Michel JB. 1992. Determinants of aortic cyclic guanosine monophos-phate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest 90:647–652.PubMedCrossRefGoogle Scholar
  2. Bachmann S, & Mundel P. 1994. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis 24:112–129.PubMedGoogle Scholar
  3. Bank N, Aynedjian HS, & Khan GA. 1994. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension 24:322–328.PubMedCrossRefGoogle Scholar
  4. Baylis C, & Qiu CB. 1996. Importance of nitric oxide in the control of renal hemodynam-ics, Kidney Int 49: 1727–1731.PubMedCrossRefGoogle Scholar
  5. Baylis C, Mitruka B, & Deng A. 1992. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281.PubMedCrossRefGoogle Scholar
  6. Baylis C, Harvey J, & Engels K. 1994. Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of angiotensin II. J Am Soc Nephrol 5:211–214.PubMedGoogle Scholar
  7. Bonnardeaux A, Nadaud S, Charm A, Jeunemaitre X, Corvol P, & Soubrier F, 1995. Lack of evidence for linkage of the endothelial cell nitric oxide synthase gene to essential hypertension. Circulation 91:96–102.PubMedCrossRefGoogle Scholar
  8. Bouriquet N, Dupont M, Herizi A, Mimran A, & Casellas D. 1996. Preglomerular su-danophilia in L-NAME hypertensive rats: involvement of endothelin. Hypertension 27:382–391.PubMedCrossRefGoogle Scholar
  9. Calver A, Collier J, & Vallance P. 1994. Forearm blood flow responses to a nitric oxide synthase inhibitor in patients with treated essential hypertension. Cardiovasc Res 28:1720–1725.PubMedCrossRefGoogle Scholar
  10. Chen PY, & Sanders PW. 1991. L-Arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 88:1559–1561.PubMedCrossRefGoogle Scholar
  11. Cockcroft JR, Chowienczyk PJ, Benjamin N, & Ritter JM. 1994. Preserved endothelium-dependent vasodilation in patients with essential hypertension. N Engl J Med 330:1036–1040.PubMedCrossRefGoogle Scholar
  12. Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, & Cooke JP. 1992. L-Arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90:1248–1253.PubMedCrossRefGoogle Scholar
  13. Erley CM, Rebmann S, Strobel U, Schmidt T, Wehrmann M, Osswald H, & Risler T. 1995. Effects of antihypertensive therapy on blood pressure and renal function in rats with hypertension due to chronic blockade of nitric oxide synthesis. Exp Nephrol 3:293–299.PubMedGoogle Scholar
  14. Fernandezrivas A, Garciaestan J, & Vargas F. 1995. Effects of chronic increased salt intake on nitric oxide synthesis inhibition-induced hypertension. J Hypertens 15:123–128.Google Scholar
  15. Fujihara CK, Michellazzo SM, De Nucci G, & Zatz R. 1994. Sodium excess aggravates hypertension and renal parenchymal injury in rats with chronic NO inhibition. Am J Phys-iol 266:F697–F705.Google Scholar
  16. Furchgott RF, & Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.PubMedCrossRefGoogle Scholar
  17. Granger J, Novak J, Schnackenberg C, Williams S, & Reinhart GA. 1996. Role of renal nerves in mediating the hypertensive effects of nitric oxide synthesis inhibition. Hypertension 27:613–618.PubMedCrossRefGoogle Scholar
  18. Guyton AC. 1990. Long term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol 259:R865–R877.PubMedGoogle Scholar
  19. Harada S, Tokunaga S, Momohara M, Masaki H, Tagawa T, Imaizumi T, & Takeshita A. 1993. Inhibition of nitric oxide formation in the nucleus tractus solitarius increases renal sympathetic nerve activity in rabbits. Circ Res 72:511–516.PubMedCrossRefGoogle Scholar
  20. Haynes WG, Noon JP, Walker BR, & Webb DJ. 1993. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens 11:1375–1380.PubMedCrossRefGoogle Scholar
  21. Huang PL, Huang ZH, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, & Fishman MC. 1995. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242.PubMedCrossRefGoogle Scholar
  22. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, & Moskowitz MA. 1996. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987.PubMedCrossRefGoogle Scholar
  23. Hunt SC, Williams CS, Sharma AM, Inoue I, Williams RR, & Lalouel JM. 1996. Lack of linkage between the endothelial nitric oxide synthase gene and hypertension. J Hypertens 10:27–30.Google Scholar
  24. Ignarro LJ, Buga GM, Wood KS, Byrns RE, & Chaudhuri G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269.PubMedCrossRefGoogle Scholar
  25. Imaizumi T, Hirooka Y, Masaki H, Harada S, Momohara M, Tagawa T, & Takeshita A. 1992. Effects of L-arginine on forearm vessels and responses to acetylcholine. Hypertension 20:511–517.PubMedCrossRefGoogle Scholar
  26. Ito A, Egashira K, Kadokami T, Fukumoto Y, Takayanagi T, Nakaike R, Kuga T, Sueishi K, Shimokawa H, & Takeshita A. 1995. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Circulation 92:2636–2644.PubMedCrossRefGoogle Scholar
  27. Joannides R, Haefeli WE, Under L, Richard V, Bakkali EH, Thuillez C, & Luscher TF. 1995. Nitric oxide is responsible for flow-dependent dilation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319.PubMedCrossRefGoogle Scholar
  28. Johnson RA, & Freeman RH. 1992. Sustained hypertension in the rat induced by chronic blockade of nitric oxide production. Am J Hypertens 5:919–922.PubMedGoogle Scholar
  29. Jover B, Herizi A, Ventre F, Dupont M, & Mimran A. 1993. Sodium and angiotensin in hypertension induced by long-term nitric oxide blockade. Hypertension 21:944–948.PubMedCrossRefGoogle Scholar
  30. Kassab S, Miller MT, Hester R, Novak J, & Granger JP. 1998. Systemic hemodynamics and regional blood flow during chronic nitric oxide synthesis inhibition in pregnant rats. Hypertension 31:315–320.PubMedCrossRefGoogle Scholar
  31. Kone BC, & Baylis C. 1997. Biosynthesis and homeostatic roles of nitric oxide in the kidney. Am J Physiol 272:F561–F578.PubMedGoogle Scholar
  32. Lahera V, Salazar J, Salom MG, & Romero JC. 1992. Deficient production of nitric oxide induces volume-dependent hypertension. J Hypertens Suppl 10:S173–S177.PubMedCrossRefGoogle Scholar
  33. Larson TS, & Lockhart JC. 1995. Restoration of vasa recta hemodynamics and pressure na-triuresis in SHR by L-arginine. Am J Physiol Renal Fluid Electrolyte Physiol 37:F907–F912.Google Scholar
  34. Laubach VE, Shesely EG, Smithies O, & Sherman PA. 1995. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 92:10688–10692.PubMedCrossRefGoogle Scholar
  35. Lyons D, Webster J, & Benjamin N. 1994. The effect of antihypertensive therapy on responsiveness to local intra-arterial N-G-monomethyl-L-arginine in patients with essential hypertension. J Hypertens 12:1047–1052.PubMedGoogle Scholar
  36. Maiese K, Boniece IR, Skurat K, & Wagner JA. 1993. Protein kinases modulate the sensitivity of hippocampal neurons to nitric oxide toxicity and anoxia. J Neurosci Res 36:77–87.PubMedCrossRefGoogle Scholar
  37. Manning RD, Hu LF, & Williamson TD. 1994. Mechanisms involved in the cardiovascular-renal actions of nitric oxide inhibition. Hypertension 23:951–956.PubMedCrossRefGoogle Scholar
  38. Matsuoka H, Nishida H, Nomura G, Vanvliet BN, & Toshima H. 1994. Hypertension induced by nitric oxide synthesis inhibition is renal nerve dependent. Hypertension 23:971–975.PubMedCrossRefGoogle Scholar
  39. Mattson D, & Higgins DJ. 1996. Influence of dietary sodium intake on renal medullary nitric oxide synthase. Hypertension 27:688–692.PubMedCrossRefGoogle Scholar
  40. Mattson DL, Lu S, Nakanishi K, Papanek PE, & Cowley AW Jr. 1994. Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am J Physiol 266:H1918–H1926.PubMedGoogle Scholar
  41. Michel JB, Xu YC, Blot S, Philippe M, & Chatellier G. 1996. Improved survival in rats administered N-G-nitro L-arginine methyl ester due to converting enzyme inhibition. J Cardiovasc Pharmacol 28:142–148.PubMedCrossRefGoogle Scholar
  42. Moncada S, Palmer RMJ, & Higgs EA. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–141.PubMedGoogle Scholar
  43. Moreno H, Nathan LP, Costa SKP, Metze K, Antunes E, Zatz R, & De Nucci G. 1995. Enalapril does not prevent the myocardial ischemia caused by the chronic inhibition of nitric oxide synthesis. Eur J Pharmacol 287:93–96.PubMedCrossRefGoogle Scholar
  44. Moreno H, Metze K, Bento AC, Antunes E, Zatz R, & De Nucci G. 1996. Chronic nitric oxide inhibition as a model of hypertensive heart muscle disease. Basic Res Cardiol 91:248–255.PubMedCrossRefGoogle Scholar
  45. Moreno H, Nathan LP, Metze K, Costa SKP, Antunes E, Hyslop S, Zatz R, De Nucci G. 1997. Non-specific inhibitors of nitric oxide synthase cause myocardial necrosis in the rat. Clin Exp Pharmacol Physiol 24:349–352.CrossRefGoogle Scholar
  46. Morikawa E, Huang Z, & Moskowitz MA. 1992. L-Arginine decreases infarct size caused by middle cerebral arterial occlusion in SHR. Am J Physiol 263:H1632–H1635.PubMedGoogle Scholar
  47. Morton JJ, Beattie EC, Speirs A, & Gulliver F. 1993. Persistent hypertension following inhibition of nitric oxide formation in the young Wistar rat: role of renin and vascular hy-pertrophy. J Hypertens 11:1083–1088.PubMedCrossRefGoogle Scholar
  48. Nakashima A, Matsuoka H, Yasukawa H, Kohno K, Nishida H, Nomura G, Imaizumi T, & Morimatsu M. 1996. Renal denervation prevents intraglomerular platelet aggregation and glomerular injury induced by chronic inhibition of nitric oxide synthesis. Nephron 73:34–40.PubMedCrossRefGoogle Scholar
  49. Navarro-Cid J, Maeso R, Rodrigo E, Munoz-Garcia R, Ruilope LM, Lahera V, & Cachofeiro V. 1996. Renal and vascular consequences of the chronic nitric oxide synthase inhibition. Effects of antihypertensive drugs. Am J Hypertens 9:1077–1083.PubMedCrossRefGoogle Scholar
  50. Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, Dawson TM, & Snyder SH. 1995. Behavioral abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 23:383–386.CrossRefGoogle Scholar
  51. Numaguchi K, Egashira K, Takemoto M, Kadokami T, Shimokawa H, Sueishi K, & Takeshita A. 1995. Chronic inhibition of nitric oxide synthesis causes coronary mi-crovascular remodeling in rats. Hypertension 26:957–962.PubMedCrossRefGoogle Scholar
  52. Palmer RMJ, Ferrige AG, & Moncada S. 1987. Nitric oxide release accounts for the biologic activity of endothelium-derived relaxing factor. Nature 327:524–526.PubMedCrossRefGoogle Scholar
  53. Panza JA, Casino PR, Kilcoyne CM, & Quyyumi AA. 1993. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 87:1468–1474.PubMedCrossRefGoogle Scholar
  54. Pollock DM, Polakowski JS, Divish BJ, & Opgenorth TJ. 1993. Angiotensin blockade reverses hypertension during long-term nitric oxide synthase inhibition. Hypertension 21:660–666.PubMedCrossRefGoogle Scholar
  55. Prado R, Watson BD, Kuluz J, & Dietrich WD. 1992. Endothelium-derived nitric oxide synthase inhibition. Effects on cerebral blood flow, pial artery diameter, and vascular morphology in rats. Stroke 23:1118–1123.PubMedCrossRefGoogle Scholar
  56. Preik M, Kelm M, Feelisch M, & Strauer BE. 1996. Impaired effectiveness of nitric oxide-donors in resistance arteries of patients with arterial hypertension. J Hypertens 14:903–908.PubMedCrossRefGoogle Scholar
  57. Qiu C, Engels K, & Baylis C. 1994. Angiotensin II and alpha l-adrenergic tone in chronic nitric oxide blockade-induced hypertension. Am J Physiol 266:R1470–R1476.PubMedGoogle Scholar
  58. Qiu C, Beierwaltes W, Racusen L, Muchant D, & Baylis C. 1998. Evolution of chronic nitric oxide inhibition hypertension: relationship to renal function. Hypertension 31:21–26.PubMedCrossRefGoogle Scholar
  59. Rees DD, Palmer RMJ, & Moncada S. 1989. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc NatlAcad Sci USA 86:3375–3378.CrossRefGoogle Scholar
  60. Reinhart GA, Lohmeier TE, & Mizelle HL. 1997. Temporal influence of the renal nerves on renal excretory function during chronic inhibition of nitric oxide synthesis. Hypertension 29:199–204.PubMedCrossRefGoogle Scholar
  61. Ribeiro MO, Antunes E, De Nucci G, Lovisolo SM, & Zatz R. 1992. Chronic inhibition of nitric oxide synthesis: a new model of arterial hypertension. Hypertension 20:298–303.PubMedCrossRefGoogle Scholar
  62. Ribeiro MO, Antunes E, Muscara MN, De Nucci G, & Zatz R. 1995. Nifedipine prevents renal injury in rats with chronic nitric oxide inhibition. Hypertension 26:150–155.PubMedCrossRefGoogle Scholar
  63. Salazar FJ, Alberola A, Pinilla JM, Romero JC, & Quesada T. 1993. Salt-induced increase in arterial pressure during nitric oxide synthesis inhibition. Hypertension 22:49–55.PubMedCrossRefGoogle Scholar
  64. Sander M, Hansen J, & Victor RG. 1997. The sympathetic nervous system is involved in the maintenance but not initiation of the hypertension induced by N-omega-nitro-L-arginine methyl ester. Hypertension 30:64–70.PubMedCrossRefGoogle Scholar
  65. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, & Smithies O. 1996. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93:13176–13181.PubMedCrossRefGoogle Scholar
  66. Sigmon DH, Carretero OA, & Beierwaltes WH. 1992. Plasma renin activity and the renal response to nitric oxide synthesis inhibition. J Am Soc Nephrol 3:1288–1294.PubMedGoogle Scholar
  67. Sventek P, Turgeon A, & Schiffrin EL. 1997. Vascular endothelin-l gene expression and effect on blood pressure of chronic ET(A) endothelin receptor antagonism after nitric oxide synthase inhibition with L-NAME in normal rats. Circulation 95:240–244.PubMedCrossRefGoogle Scholar
  68. Takahashi H, Hara K, Komiyama Y, Masuda M, Murakami T, Nishimura M, Nambu A, & Yoshimura M. 1995. Mechanism of hypertension induced by chronic inhibition of nitric oxide in rats. Hypertens Res 15:319–324.CrossRefGoogle Scholar
  69. Takase H, Moreau P, Kung CF, Nava E, & Luscher TF. 1996. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency: effect of verapamil and trandolapril. Hypertension 27:25–31.PubMedCrossRefGoogle Scholar
  70. Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K, & Takeshita A. 1997. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest 99:278–287.PubMedCrossRefGoogle Scholar
  71. Tolins JP, & Shultz PJ. 1994. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int 46:230–236.PubMedCrossRefGoogle Scholar
  72. Traystman RJ, Moore LE, Helfaer MA, Davis S, Banasiak K, Williams M, & Hum PD. 1995. Nitro-L-arginine analogues. Dose and time related nitric oxide inhibition in brain. Stroke 26:864–869.PubMedCrossRefGoogle Scholar
  73. Trifiletti RR. 1992. Neuroprotective effects of N G-nitro-L-arginine in focal stroke in the 7-day old rat. Eur J Pharmacol 218:197–198.PubMedCrossRefGoogle Scholar
  74. Tseng CJ, Liu HY, Lin HC, Ger LP, Tung CS, & Yen MH. 1996. Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 27:36–42.PubMedCrossRefGoogle Scholar
  75. Warren JB. 1994. Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light. FASEB J 8:247–251.PubMedGoogle Scholar
  76. Wolzt M, Schmetterer L, Ferber W, Artner E, Mensik C, Eichler HG, & Krejcy K. 1997. Effect of nitric oxide synthase inhibition on renal hemodynamics in humans: reversal by L-arginine. Am J Physiol Renal Physiol 41: F178–F182.Google Scholar
  77. Yamada SS, Sassaki AL, Fujihara CK, Malheiros DMAC, De Nucci G, & Zatz R. 1996. Effect of salt intake and inhibitor dose on arterial hypertension and renal injury induced by chronic nitric oxide blockade. Hypertension 27:1165–1172.PubMedCrossRefGoogle Scholar
  78. Zanchi A, Schaad NC, Osterheld MC, Grouzmann E, Nussberger J, Brunner HR, & Waeber B. 1995. Effects of chronic NO synthase inhibition in rats on renin-angiotensin system and sympathetic nervous system. Am J Physiol 268:H2267–H2273.PubMedGoogle Scholar
  79. Zatz R, & De Nucci G. 1991. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol 267:F360–F363.Google Scholar
  80. Zhang K, Mayhan WG, Patel KP. 1997. Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity. Am J Physiol 273:R864–R872.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Roberto Zatz
  • Christine Baylis

There are no affiliations available

Personalised recommendations