Skip to main content

Nitric Oxide Derived from Perivascular Nerves and Endothelium

  • Chapter
Nitric Oxide and the Regulation of the Peripheral Circulation

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 1))

  • 67 Accesses

Abstract

Endothelium-derived relaxing factor (EDRF) was discovered by Furchgott and Zawadzki (1980), who observed that acetylcholine-induced relaxation of the isolated rabbit aorta was endothelium-dependent and that vascular smooth muscle directly responded to acetylcholine with slight contraction. The discovery brought us the marvelous idea that vascular endothelium influences not only the blood stream but also the smooth muscle cells, thus participating in the regulation of platelet aggregation and adhesion and of vascular tone. In 1988 EDRF was identified as nitric oxide (NO), a highly diffusible and short-lived free radical, synthesized by NO synthase from L-arginine (Palmer et al. 1988a). Specific inhibitors of NO synthase (NOS), introduced by Palmer et al. (1988b), enabled us to clarify the physiological roles of endogenous NO. This lipophilic gas molecule is now recognized to be a new intercellular messenger not only in the circulatory system but also in the central nervous and immune systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisaka K, Gross SS, Griffith OW, & Levi R. 1989. N G-Methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun 160:881–886.

    Article  PubMed  CAS  Google Scholar 

  • Angus JA, & Cocks TM. 1989. Endothelium-derived relaxing factor. Pharmacol Ther 41:303–351.

    Article  PubMed  CAS  Google Scholar 

  • Ayata C, Ma J, Meng W, Huang P, & Moskowitz MA. 1996. L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Metab 16:539–541.

    Article  PubMed  CAS  Google Scholar 

  • Baggia S, Perkins K, & Greenberg B. 1997. Endothelium-dependent relaxation is not unformly impaired in chronic heart failure. J Cardiovasc Pharmacol 29:389–396.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, & Snyder SH. 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  PubMed  CAS  Google Scholar 

  • Cases A, Stulak JM, Katusic Z, Villa E, & Romero JC. 1997. Hemodynamic and renal effects of cross-linked hemoglobin infusion. Am J Physiol 272.R793–R799.

    PubMed  CAS  Google Scholar 

  • Chauhan A, More RS, Mullins PA, Taylor G, Petch C, & Schofield PM. 1996. Aging associated endothelial dysfunction in humans is reversed by L-arginine. J Am Coll Car-diol 28:1796–1804.

    Article  CAS  Google Scholar 

  • Chu A, Lin CC, Chambers DE, Kuehl WD, Palmer RMJ, Moncada S, & Cobb FR. 1991. Effects of inhibition of nitric oxide formation on basal tone and endothelium-dependent responses of the coronary arteries in awake dogs. J Clin Invest 87:1964–1968.

    Article  PubMed  CAS  Google Scholar 

  • Dijkhorst O, Rabelink TJ, Boer P, & Koomans HA. 1997. Nifedipine attenuates systemic and renal vasoconstriction during nitric oxide inhibition in humans. Hypertension 29:1192–1198.

    Article  Google Scholar 

  • Edvinsson L, Muculloch J, & Uddman R. 1981. Immunohistochemical localization and effect upon cat pial arteries in vivo and in situ. J Physiol 318:251–258.

    PubMed  CAS  Google Scholar 

  • Feletou M, & Vanhoutte PM. 1996. Endothelium-derived hyperpolarizing factor. Clin Exp Pharmacol Physiol 23:1082–1090.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF. 1983. Role of endothelium in responses of vascular smooth muscle. Circ Res 53:557–513.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF. 1984. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 24:175–197.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF, & Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–316.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SM, Compton AM, Bennett T, Palmer RMJ, & Moncada S. 1990. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 15:486–492.

    Article  PubMed  CAS  Google Scholar 

  • Gaw AJ, Wadsworth RM, & Humphrey PPA. 1990. Neurotransmission in the sheep middle cerebral artery: modulation of responses by 5-HT and haemolysate. J Cereb Blood Flow Metab 10:409–416.

    Article  PubMed  CAS  Google Scholar 

  • Griffith TM, Edwards DH, Lewis MJ, Newby AC, & Henderson AH. 1984. The nature of endothelium-derived vascular relaxing factor. Nature 329:442–445.

    Article  Google Scholar 

  • Haynes WG, Noon JP, Walker BR, & Webb DJ. 1993. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens 11:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Taintor RR, & Vavrin Z. 1987. Macrophage cytotoxicity: role for L-arginine deiminase activity and imino nitrogen oxidation to nitrite. Science 235:473–416.

    Article  PubMed  CAS  Google Scholar 

  • Hill C, Lateef AM, Engels K, Samsell L, & Baylis C. 1997. Basal and stimulated nitric oxide in control of kidney function in the aging rat. Am J Physiol, 272:R1747–R1753.

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, & Fishman MC. 1995. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Takasaki T, Saito A, & Goto K. 1988. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature 335:164–167.

    Article  PubMed  CAS  Google Scholar 

  • Klabunde RE, Ritger RC, & Helgren MC. 1991. Cardiovascular actions of inhibitors of endothelium-derived relaxing factor (nitric oxide) formation/release in anesthetized dogs. Eur J Pharmacol 199:51–59.

    Article  PubMed  CAS  Google Scholar 

  • Larsson LI, Edvinsson L, Fahrenkrug J, Hakanson R., Owman C, Schaffalitzky-deMuckadell O, & Sundler F. 1976. Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res 113:400–404.

    Article  PubMed  CAS  Google Scholar 

  • Leckstrom A, Ahlner J, Grundstrom N, & Axelsson KL. 1993. Involvement of nitric oxide and peptides in the inhibitory non-adrenergic, non-cholinergic (NANC) response in bovine mesenteric artery. Pharmacol Toxicol 72:194–198.

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Oimos L, & Vanhoutte PM. 1996. Recovery of endothelium-dependent relaxations four weeks after ischemia and progressive reperfusion in canine coronary arteries. Proc AssocAm Physician 108:362–367.

    CAS  Google Scholar 

  • Lee TJ-F, Sarwinski SJ. 1991. Nitric oxidergic vasodilation in the porcine basilar artery. Blood Vessels 28:407–412.

    PubMed  CAS  Google Scholar 

  • Liu SF, Crawley DE, Rohde JAL, Evans TW, & Barnes PJ. 1992. Role of nitric oxide and guanosine 3’, 5’-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries. Br J Pharmacol 107:861–866.

    Article  PubMed  CAS  Google Scholar 

  • Lockette W, Otsuka Y, & Carretero O. 1986. The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension 8(Suppl):II6ĹŞ66.

    Google Scholar 

  • Moncada S, Palmer RMJ, & Higgs EA. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142.

    PubMed  CAS  Google Scholar 

  • Montecot C, Borredon J, Seylaz J, & Pinard E. 1997. Nitric oxide of neuronal origin is involved in cerebral blood flow increase during seizures induced by kainate. J Cereb Blood Flow Metab 17:94–99.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, & Toda N. 1994a. Nitric oxide (NO)-mediated, vasodilator nerve function and its susceptibility to calcium antagonists. J Auton Nerv Sys 49:S55–S58.

    Article  CAS  Google Scholar 

  • Okamura T, & Toda N. 1994b. Inhibition by calmodulin antagonists of the neurogenic relaxation in cerebral arteries. Eur J Pharmacol 256:79–83.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, & Toda N. 1994c. Mechanism underlying nicotine-induced relaxation in dog saphenous arteries. Eur J Pharmacol 263:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, Inoue S, & Toda N. 1989a. Action of atrial natriuretic peptide (ANP) on dog cerebral arteries: evidence that neurogenic relaxation is not mediated by release of ANP. Br J Pharmacol 97:1258–1264.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, Minami Y, Toda N. 1989b. Endothelium-dependent and independent mechnisms of action of acetylcholine in monkey and dog isolated arteries. Pharmacology 35:279–288.

    Article  Google Scholar 

  • Okamura T, Ayajiki K, & Toda N. 1995. Basilar arterial constriction caused by intracisternal N G-nitro-L-arginine in anesthetized monkeys. Cardiovasc Res 30:663–667.

    PubMed  CAS  Google Scholar 

  • Okamura T, Ayajiki K, & Toda N. 1996. Neural mechanism of pressor action of nitric oxide synthase inhibition in anesthetized monkeys. Hypertension 28:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ashton DS, & Moncada S. 1988a. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666.

    Article  PubMed  CAS  Google Scholar 

  • Palmer RMJ, Rees DD, Ashton DS, & Moncada S. 1988b. L-Arginine is the physiological precursor for the formation of nitric oxide in the endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  • Possas OS, & Lewis SJ. 1997. NO-containing factors mediate hindlimb vasodilation produced by superior laryngeal nerve stimulation. Am J Physiol 273:H234–H243.

    PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Hodson HF, & Moncada S. 1989a. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 96:418–424.

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, & Moncada S. 1989b. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378.

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Schulz R, Hodson HF, Palmer RMJ, & Moncada S. 1990. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101:746–752.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi GM, Romero JC, & Vanhoutte PM. 1992. Flow-induced release of endotheliumderived relaxing factor. Am J Physiol 250:H1145–H1149.

    Google Scholar 

  • Sessa WC, Barber CM, & Lynch KR. 1993. Mutation of N-myristoylation site converts endothelial nitric oxide synthase from a membrane to a cytosolic protein. Circ Res 72i921–924.

    Google Scholar 

  • Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, & Takeshita A. 1996. The importance of the hyper-polarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28:703–711.

    Article  PubMed  CAS  Google Scholar 

  • Toda N. 1975. Nicotine-induced relaxation in isolated canine cerebral arteries. J Pharmacol ExpTher 193:376–384.

    CAS  Google Scholar 

  • Toda N. 1978. Heterogeneity in the relaxation of vascular smooth muscle. In: Vanhoutte PM, ed. Vasodilatation. Basel: Karger, pp 129–136.

    Google Scholar 

  • Toda N. 1982. Relaxant responses to transmural stimulation and nicotine of dog and monkey cerebral arteries. Am J Physiol 243:H145–H153.

    PubMed  CAS  Google Scholar 

  • Toda N. 1988. Hemolysate inhibits cerebral artery relaxation. J Cereb Blood Flow Metab 8:46–53.

    Article  PubMed  CAS  Google Scholar 

  • Toda N. 1993. Mediation by nitric oxide of neurally-induced human cerebral artery relaxation. Experientia 49:51–53.

    Article  PubMed  CAS  Google Scholar 

  • Toda N. 1994. Nitroxidergic innervation in smooth muscle. In: Matsuo Y, Kasuya Y, Tuchiya M, & Nagao F, eds. Gastrointestinal Function; Regulation and Disturbances, Vol 12. Tokyo: Excerpta Medica, pp3–7.

    Google Scholar 

  • Toda N. 1995. Nitric oxide and regulation of cerebral arterial tone. In: Vincent R, ed. Nitric Oxide in the Nervous System. New York: Academic Press, pp 207–225.

    Chapter  Google Scholar 

  • Toda N, & Okamura T. 1990a. Possible role of nitric oxide in transmitting information from vasodilator nerve to cerebroarterial muscle. Biochem Biophys Res Commun 170:308–313.

    Article  PubMed  CAS  Google Scholar 

  • Toda N, & Okamura T. 1990b. Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am J Physiol 259: H1511–H1517.

    PubMed  CAS  Google Scholar 

  • Toda N, & Okamura T. 1991. Suppression by N G-monomethyl-L-arginine of cerebroarteial responses to nonadrenergic, noncholinergic vasodilator nerve stimulation. J Cardiovasc Pharmacol 17 (Suppl 3:S234–S237.

    Article  CAS  Google Scholar 

  • Toda N, & Okamura T. 1992a. Regulation by nitroxidergic nerve of arterial tone. News Physiol Sci 7:148–152.

    CAS  Google Scholar 

  • Toda N, & Okamura T. 1992b. Different susceptibility of vasodilator nerve, endothelium and smooth muscle functions to Ca++ antagonists in cerebral arteries. J Pharmacol Exp Ther 261:234–239.

    PubMed  CAS  Google Scholar 

  • Toda N, & Okamura T. 1992c. Mechanism of neurally induced monkey mesenteric artery relaxation and contraction. Hypertension 19:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Toda N, Minami Y, & Okamura T. 1990. Inhibitory effects of L-N G-nitro-arginine on the synthesis of EDRF and the cerebroarterial response to vasodilator nerve stimulation. Life Sci 47:345–351.

    Article  PubMed  CAS  Google Scholar 

  • Toda N, Kawakami M, Yamazaki M, & Okamura T. 1991a. Comparison of endothelium-dependent responses of monkey cerebral and temporal arteries. Br J Pharmacol 102:805–810.

    Article  PubMed  CAS  Google Scholar 

  • Toda N, Kitamura Y, & Okamura T. 1991b. New idea on the mechanism of hypertension: suppression of nitroxidergic vasodilator nerve function. J Vasc Med Biol 3:235–241.

    Google Scholar 

  • Toda N, Yoshida K, & Okamura T. 1991c. Analysis of the potentiating action of N G-nitro L-arginine on the contraction of the dog temporal artery elicited by transmural stimulation of noradrenergic nerves. Naunyn Schmiedeberg’s Arch Pharmacol 343:221–224.

    Article  CAS  Google Scholar 

  • Toda N, Ayajiki K, & Okamura T. 1993a. Endothelial modulation of contractions caused by oxyhemoglobin and N G-nitro-L-arginine in isolated dog and monkey cerebral arteries. Stroke 24: 584–1588.

    Article  Google Scholar 

  • Toda N, Ayajiki K, & Okamura T. 1993b. Neural mechanism underlying basilar arterial constriction by intracisternal L-NNA in anesthetized dogs. Am J Physiol 265:H103–H107.

    PubMed  CAS  Google Scholar 

  • Toda N, Kitamura Y, & Okamura T. 1993c. Neural mechanism of hypertension by nitric oxide synthase inhibitor in dogs. Hypertension 21:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Toda N, Kimura T, Yoshida K, Bredt DS, Snyder SH, Yoshida Y, & Okamura T. 1994. Human uterine arterial relaxation induced by nitroxidergic nerve stimulation. Am J Physiol 266:H1446–H1450.

    PubMed  CAS  Google Scholar 

  • Toda N, Uchiyama M, & Okamura T. 1995. Prejunctional modulation of nitroxidergic nerve function in canine cerebral arteries. Brain Res 700:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Toda N, Ayajiki K, & Okamura T. 1998. Effect of Ca2+/calmodulin-dependent protein ki-nase II inhibitors on the neurogenic cerebroarterial relaxation. Eur J Pharmacol 340:59–65.

    Article  Google Scholar 

  • Togashi H, Sakuma I, Yoshioka M, Kobayashi T, Yasuda H, Kitabatake A, Saito H, Gross SS, & Levi R. 1992. A central nervous system action of nitric oxide in blood pressure regulation. J Pharmacol Exp Ther 262:343–347.

    PubMed  CAS  Google Scholar 

  • Wanaka K, Matsuyama T, Yoneda S, Kimura K, Kamada T, Girgis S, Macintyre I, Emson P, & Tohyama M. 1986. Origins and distribution of calcitonin gene-related peptide-containing nerves in the wall of the cerebral arteries of the guinea pig with special reference to the coexistence with substance P. Brain Res 369:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Okamura T, & Toda N. 1993. Mechanisms of acetylcholine-induced relaxation in dog external and internal ophthalmic arteries. Exp Eye Res 57:275–281.

    Article  PubMed  CAS  Google Scholar 

  • Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, & Moncada S. 1994. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 91:5212–5216.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Okamura T, Kimura H, Bredt DS, Snyder SH, & Toda N. 1993. Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries. Brain Res 629:67–72.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Okamura T, & Toda N. 1994. Histological and functional studies on the nitroxidergic nerve innervating monkey cerebral, mesenteric and temporal arteries. Jpn J Pharmacol 65:351–359.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okamura, T., Toda, N. (2000). Nitric Oxide Derived from Perivascular Nerves and Endothelium. In: Kadowitz, P.J., McNamara, D.B. (eds) Nitric Oxide and the Regulation of the Peripheral Circulation. Nitric Oxide in Biology and Medicine, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1326-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1326-0_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7095-9

  • Online ISBN: 978-1-4612-1326-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics