Skip to main content

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 1))

  • 68 Accesses

Summary

Extracellular purines and pyrimidines regulate blood flow by pronounced effects on vascular tone mediated via cell surface purinergic receptors. There are two superfamilies of purinergic receptors: Pl receptors, recognizing adenosine, and P2 receptors, recognizing primarily ATP, ADP, UTP, and UDP. Pl receptors are further subdivided into four subtypes, A1 A2A, A2B, and A3, all of which couple to G proteins. P2 receptors are divided according to whether they are ligand-gated ion channels (P2X receptors) or are coupled to G proteins (P2Y receptors). Seven P2X and seven P2Y receptor proteins have been cloned to date. Members of both the Pl and P2 receptor families are expressed on blood vessels, smooth muscle, endothelium, and perivascular nerves, according to distinct patterns of distribution, where they are associated with specific effects on vascular tone. Nitric oxide (NO) is released from the endothelium and from perivascular nerves in some vessels, to act as a mediator and modulator of responses elicited by purines anpyrimidines. This chapter examines the relationship between vascular purinergic receptors and NO in the control of blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, & Burnstock G. 1994. Purinoceptors: are there families of P2X and P7Y purinoceptors? Pharmacol Ther 64:445–475.

    Article  PubMed  CAS  Google Scholar 

  • Abebe W, Makujina SR, & Mustafa SJ. 1994. Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. Am J Physiol 266:H2018–H2025.

    PubMed  CAS  Google Scholar 

  • Akatsuka Y, Egashira K, Katsuda Y, Narishige T, Ueno H, Shimokawa H, & Takeshita A. 1994. ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog. Cardiovasc Res 28:906–911.

    Article  PubMed  CAS  Google Scholar 

  • Angus JA, Broughton A, & Mulvany MJ. 1988. Role of a-adrenoceptors in constrictor responses of rat, guinea-pig and rabbit small arteries to neural activation. J Physiol 403:495–510.

    PubMed  CAS  Google Scholar 

  • Balwierczak JL, Sharif R, Krulan CM, Field FP, Weiss GB, & Miller MJS. 1991. Comparative effects of a selective adenosine A2 receptor agonist, CGS 21680, and nitroprusside in vascular smooth muscle. Eur J Pharmacol 117–123.

    Google Scholar 

  • Bean BP. 1992. Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol Sci 13:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj R, Page CP, May GR, & Moore PK. 1988. Endothelium-derived relaxing factor inhibits platelet aggregation in human whole blood in vitro and in the rat in vivo. Eur J Pharmacol 157:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Bodin P, Milner P, Winter R, & Burnstock G. 1992. Chronic hypoxia changes the ratio of endothelin to ATP release from rat aortic endothelial cells exposed to high flow. Proc R Soc Lond B 247:131–135.

    Article  CAS  Google Scholar 

  • Born GVR, & Kratzer MAA. 1984. Source and concentration of extracellular adenosine triphosphate during haemostasis in rats, rabbits and man. J Physiol 354:419–429.

    PubMed  CAS  Google Scholar 

  • Bowden A, Patel V, Brown C, & Boarder MR. 1995. Evidence for requirement of tyrosine phosphorylation in endothelial P2Y-and P2U-purinoceptor stimulation of prostacyclin release. Br J Pharmacol 116:2563–2568.

    Article  PubMed  CAS  Google Scholar 

  • Brizzolara A, & Burnstock G. 1991. Endothelium-dependent and endothelium-independent vasodilatation of the hepatic artery of the rabbit. Br J Pharmacol 103:1206–1212.

    Article  PubMed  CAS  Google Scholar 

  • Brizzolara AL, Crowe R, & Burnstock G. 1993. Evidence for the involvement of both ATP and nitric oxide in non-adrenergic non-cholinergic inhibitory neurotransmission in the rabbit portal vein. Br J Pharmacol 109:606–608.

    Article  PubMed  CAS  Google Scholar 

  • Bucher B, Ouedraogo S, Tschopl M, Paya D, & Stoclet JC. 1992. Role of the L-arginine pathway and of cyclic GMP in electrical field-induced noradrenaline release and vasoconstriction in the rat tail artery. Br J Pharmacol 107:976–982.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G. 1987. Local control of blood pressure by purines. Blood Vessels 24:156–160.

    PubMed  CAS  Google Scholar 

  • Burnstock G. 1990. Co-transmission. The Fifth Heymans Memorial Lecture. Arch Int Pharmacodyn Ther 304:7–33.

    PubMed  CAS  Google Scholar 

  • Burnstock G, & Kennedy C. 1986. Purinergic receptors in the cardiovascular system. Prog Pharmacol 6:111–132.

    CAS  Google Scholar 

  • Burnstock G, & King BF. 1996. Numbering of cloned P2 purinoceptors. Drug Dev Res 38:67–71.

    Article  CAS  Google Scholar 

  • Burnstock G, & Ralevic V. 1996. Cotransmission. In: Garland CJ, Angus JA, eds. Pharmacology of Vascular Smooth Muscle. Oxford: Oxford University Press, pp 210–232.

    Chapter  Google Scholar 

  • Burnstock G, & Warland JJI. 1987. A pharmacological study of the rabbit saphenous artery in vitro: a vessel with a large purinergic contractile response to sympathetic nerve stimulation. Br J Pharmacol 90:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Cederqvist B, & Gustafsson LE. 1994. Modulation of neuroeffector transmission in guinea-pig pulmonary artery and vas deferens by exogenous nitric oxide. Acta Physiol Scand 150:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Cederqvist B, Wiklund NP, Persson MG, & Gustafsson LE. 1991. Modulation of neuroeffector transmission in the guinea pig pulmonary artery by endogenous nitric oxide. Neurosci Lett 127:61–69.

    Article  Google Scholar 

  • Chen BC, Lee C-M, Lee YT, & Lin W-W. 1996. Characterization of signaling pathways of P?Y and P9U purinoceptors in bovine pulmonary artery endothelial cells. J Cardiovasc Pharmacol 28:192–199.

    Article  PubMed  CAS  Google Scholar 

  • Chiang PH, Wu SN, Tsai EM, Wu CC, Shen MR, Huang CH, & Chiang CP 1994. Adenosine modulation of neurotransmission in penile erection. Br J Clin Pharmacol 38:357–362.

    Article  PubMed  CAS  Google Scholar 

  • Cohen RA, & Weisbrod RM. 1988. The endothelium inhibits norepinephrine release from adrenergic nerves of the rabbit carotid artery. Am J Physiol 254:H871–H878.

    PubMed  CAS  Google Scholar 

  • Cohen RA, Tesfamariam B, & Weisbrod RM. 1990. The endothelium inhibits adrenergic neurotransmission. In: Vanhoutte PM, Rubanyi GM, eds. Proceedings of the First International Symposium on Endothelium-Derived Vasoactive Factors. New York: Karger, pp 206–212.

    Google Scholar 

  • Communi D, Raspe E, Pirotton S, & Boeynaems JM. 1995. Coexpression of P2Y and P2U receptors on aortic endothelial cells. Comparison of cell localization and signaling pathways. CircRes 76:191–198.

    CAS  Google Scholar 

  • Conti A, Monopoli A, Gamba M, Borea PA, & Ongini E. 1993. Effects of selective A, and A2 adenosine receptor agonists on cardiovascular tissues. Naunyn Schmiedebergs Arch Pharmacol 348:108–112.

    Article  PubMed  CAS  Google Scholar 

  • Cook SP, Vulchanova L, Hargreaves KM, EIde R, & McCleskey EW. 1997. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387:505–508.

    Article  PubMed  CAS  Google Scholar 

  • Corr L, & Burnstock G. 1994. Analysis of P2-purinoceptor subtypes on the smooth muscle and endothelium of rabbit coronary artery. J Cardiovasc Res 23:709–715.

    CAS  Google Scholar 

  • Cristalli G, Camaioni E, Vittori S, Volpini R, Borea PA, Conti A, Dionisotti S, Ongini E, & Monopoli A. 1995. 2-Aralkynyl and 2-heteroalkynyl derivatives of adenosine-5’-Af-ethyluronamide as selective A2A adenosine receptor agonists. J Med Chem 38:1462–1412.

    Article  PubMed  CAS  Google Scholar 

  • Drury AN, & Szent-Györgyi A. 1929. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237.

    PubMed  CAS  Google Scholar 

  • Dubyak GR, & El-Moatassim C. 1993. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265.C577–C606.

    PubMed  CAS  Google Scholar 

  • Ellsworth ML, Forrester T, Ellis CG, & Dietrich HH. 1995. The erythrocyte as a regulator of vascular tone. Am J Physiol 268.H2155–H2161.

    Google Scholar 

  • Eltze M, & Ullrich B. 1996. Characterization of vascular P2 purinoceptors in the rat isolated perfused kidney. J Pharmacol 306:139–152.

    CAS  Google Scholar 

  • Evans RJ, & Kennedy C. 1994. Characterization of P2-purinoceptors in the smooth muscle of the rat tail artery: a comparison between contractile and electrophysiological responses. BrJ Pharmacol 113:853–860.

    Article  CAS  Google Scholar 

  • Evans RJ, & Suprenant A. 1992. Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106:242–249.

    Article  PubMed  CAS  Google Scholar 

  • Forrester T. 1990. Release of ATP from heart: presentation of a release model using human erythrocyte. Ann NYAcad Sci 603:335–352.

    Article  CAS  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden KT, Jacobson KA, Leff P, & Williams M. 1994. Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156.

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Burnstock G, Harden KT, & Spedding M. 1996. Receptor nomenclature. Drug Dev Res 39:461–466.

    Article  CAS  Google Scholar 

  • Fuder H, & Muth U. 1993. ATP and endogenous agonists inhibit evoked [3H]-noradrenaline release in rat iris via A, and P2Y-like purinoceptors. Naunyn Schmiedebergs Arch Pharmacol 348:352–357.

    PubMed  CAS  Google Scholar 

  • Furchgott RF, & Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  • Gallinaro BJ, Reimer WJ, & Dixon SJ. 1995. Activation of protein kinase C inhibits ATP-induced [Ca2+]j elevation in rat osteoblastic cells: selective effects on P2Y and P2(J signaling pathways. J Cell Physiol 162:305–314.

    Article  PubMed  CAS  Google Scholar 

  • Garland CJ, Plane F, Kemp BK, & Cocks TM. 1995. Endothelium-dependent hyperpolar-ization: a role in the control of vascular tone. Trends Pharmacol Sci 16:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Goetz V, Prada DA, & Pletscher MA. 1971. Adenine-, guanine-and uridine-5ö-phosphonucleotides in blood platelets and storage organelles of various species. J. Pharmacol ExpTher 175:210–215.

    Google Scholar 

  • Gonçalves J, & Queiroz G. 1993. Purinergic modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y-and facilitatory P2X-purinoceptors. Br J Pharmacol 177:156–160.

    Google Scholar 

  • Gordon JF, Baird M, Daly CJ, & McGrath JC. 1992. Endogenous nitric oxide modulates sympathetic neuroeffector transmission in the isolated rabbit lateral saphenous vein. J Cardiovasc Pharmacol 20:S68–S71.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg S, Diecke FPJ, Peevy K, & Tanaka TP. 1989. The endothelium modulates adren-ergic neurotransmission to canine pulmonary arteries and veins. Eur J Pharmacol 162:67–80.

    Article  PubMed  CAS  Google Scholar 

  • Gurden MF, Coates J, Ellis F, Evans B, Foster M, Hornby E, Kennedy I, Martin DP, Strong P, Vardey CJ, & Wheeldon A. 1993. Functional characterization of three adeno-sine receptor subtypes. Br J Pharmacol 109:693–698.

    Article  PubMed  CAS  Google Scholar 

  • Hechler B, Leon C, Vial C, Vigne P, Frelin C, Cazenave J-P, & Gachet C. 1998. The P2Y, receptor is necessary for adenosine 5ö-triphosphate-induced platelet aggregation. Blood 92:152–159.

    PubMed  CAS  Google Scholar 

  • Holton FA, & Holton P. 1953. The possibility that ATP is a transmitter at sensory nerve endings. J Physiol 119:50–51P.

    Google Scholar 

  • Holton FA, & Holton P. 1954. The capillary dilator substances in dry powders of spinal roots: a possible role of ATP in chemical transmission. J Physiol 726:124–140.

    Google Scholar 

  • Holton P. 1959. The liberation of ATP on antidromic stimulation of sensory nerves. J Physioli 145:494–504.

    CAS  Google Scholar 

  • Holtz J, Forstermann U, Pohl U, Giesler M, & Bassenge E. 1984. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169.

    PubMed  CAS  Google Scholar 

  • Hourani SMO, & Hall DA, 1996. P2T purinoceptors: ADP receptors on platelets. In: P2 Purinoceptors: Localization, Function and Transduction Mechanisms. Chichester: Wiley, pp. 53–70.

    Google Scholar 

  • Hull SS, Kaiser L, Jaffe MD, Sparks HV. 1986. Endothelium-dependent flow-induced dilation of canine femoral and saphenous arteries. Blood Vessels 23:183-198.

    Google Scholar 

  • Huttemann E, Ukena D, Lenschow V, Schwabe U. 1984. Ra adenosine receptors in human platelets: characterization by 5’-N-ethylcarboxamido[3H]-adenosine binding in relation to adenylate cyclase activity. Naunyn Schmiedebergs Arch Pharmacol 325:226–233.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Byrns RE, Buga GM, & Wood KS. 1987. Endothelium-derived relaxing factor from pulmonary artery and vein possess pharmacologie and chemical properties identical to those of nitric oxide radical. Circ Res 61:866–879.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki M, Iizuka Y, Suzuki-Kusaba M, Kimura T, & Satoh S. 1997. Nonadrenergic contractile response of guinea pig portal vein to electrical field stimulation mimics response to UTP but not to ATP. J Cardiovasc Pharmacol 29:360–366.

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Umemura S, Toya Y, Uchibori T, Kogi K, Takagi N, & Ishii M. 1994. Identification of adenosine A2 receptor cAMP system in human aortic endothelial cells. Biochem Biophys Res Commun 199:905–910.

    Article  PubMed  CAS  Google Scholar 

  • Juul B, Plesner L, & Aalkjaer C. 1992. Effects of ATP and UTP on [Ca2+], membrane potential and force in isolated rat small arteries. J Vase Res 29:385–395.

    Article  CAS  Google Scholar 

  • Kaiser L, Hull SS, & Sparks HV. 1986. Methylene blue and ETYA block flow-dependent dilation in canine femoral artery. Am J Physiol 250.H974–H981.

    PubMed  CAS  Google Scholar 

  • Keefe KD, Pasco JS, & Eckman DM. 1992. Purinergic relaxation and hyperpolarization in guinea pig and rabbit coronary artery: role of the endothelium. J Pharmacol Exp Ther 260:592–600.

    Google Scholar 

  • Kennedy C, & Burnstock G. 1985. Evidence for two types of P2-purinergic receptor in the longitudinal muscle of the rabbit portal vein. Ear J Pharmacol 111:49–56.

    Article  CAS  Google Scholar 

  • Kurz K, von Kiigelgen I, & Starke K. 1993. Prejunctional modulation of noradrenaline release in mouse and rat vas deferens: contribution of P-and P2-purinoceptors. Br J Pharmacol 110:1465–1472.

    Article  PubMed  CAS  Google Scholar 

  • Lagaud GJL, Stoclet JC, & Andriantsitohaina R. 1996. Calcium handling and purinoceptor subtypes involved in ATP-induced contraction in rat small mesenteric arteries. J Physiol 492:689–703.

    PubMed  CAS  Google Scholar 

  • Lewis CD, Hourani SM, Long CJ, & Collis MG. 1994. Characterization of adenosine receptors in the rat isolated aorta. Gen Pharmacol 25:1381–1387.

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, & Surprenant A. 1995. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurones. Nature 377:432–435.

    Article  PubMed  CAS  Google Scholar 

  • Li YJ, Yu XJ, & Deng HW. 1993. Nitric oxide modulates responses to sensory nerve activation of the perfused rat mesentery. Eur J Pharmacol 239:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Liu SF, McCormack DG, Evans TW, & Barnes PJ. 1989. Evidence for two P-purinoceptor subtypes in human small pulmonary arteries. Br J Pharmacol 98:1014–1020.

    Article  PubMed  CAS  Google Scholar 

  • Liu SF, Crawley DE, Evans TW, & Barnes PJ. 1992. Endothelium-dependent nonadrener-gic, noncholinergic neural relaxation in guinea pig pulmonary artery. J Pharmacol Exp Ther 260:541–548.

    PubMed  CAS  Google Scholar 

  • MacKenzie AB, Mahaut-Smith MP, & Sage SO. 1996. Activation of receptor-operated cation channels via P2X not P2T receptors in human platelets. J Biol Chem 271: 2879–2881.

    Article  PubMed  CAS  Google Scholar 

  • MacLean MR, McCulloch KM, MacMillan JB, & McGrath JC. 1993. Influences of the end othelium and hypoxia on neurogenic transmission in the isolated pulmonary artery of the rabbit. Br J Pharmacol 108:150–154.

    Article  PubMed  CAS  Google Scholar 

  • Makujina SR, Sabouni MH, Bhatia S, Douglas FL, & Mustafa SF. 1992. Vasodilator effects of adenosine A2 receptor agonists CGS 21680 and CGS 22492 in human vasculature. Eur J Pharmacol 221:243–247.

    Article  PubMed  CAS  Google Scholar 

  • Martin PL, & Potts AA. 1994. The endothelium of the rat renal artery plays an obligatory role in A2adenosine receptor-mediated relaxation induced by 5’-N-ethylcarboxami-doadenosine and A-cyclopentyladenosine. J Pharmacol Exp Ther 270:893–899.

    PubMed  CAS  Google Scholar 

  • Martin PL, Ueeda M, & Olsson RA. 1993. 2-Phenylethoxy-9-methyladenosine: an adenosine receptor antagonist that discriminates between A2 adenosine receptor in the aorta and the coronary vessels from the guinea pig. J Pharmacol Exp Ther 265:248–253.

    PubMed  CAS  Google Scholar 

  • Martin W, Cusack NJ, Carleton JS, & Gordon JL. 1985. Specificity of the P2-purinoceptor that mediates endothelium-dependent relaxation of the pig aorta. Eur J Pharmacol 108:295–299.

    Article  PubMed  CAS  Google Scholar 

  • Mathieson JJI, & Burnstock G. 1985. Purine-mediated relaxation and constriction of isolated rabbit mesenteric artery are not endothelium-dependent. Eur J Pharmacol 118:221–229.

    Article  PubMed  CAS  Google Scholar 

  • Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, & Kadowitz PJ. 1981. Evidence for the inhibitory role of guanosine 3’,5’-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilation. Blood 57:946–955.

    PubMed  CAS  Google Scholar 

  • Merkel LA, Lappe RW, Rivera LM, Cox BF, & Perrone MH. 1992. Demonstration of va-sorelaxant activity with an A-selective adenosine agonist in porcine coronary artery: involvement of potassium channels. J Pharmacol Exp Ther 260:437–443.

    PubMed  CAS  Google Scholar 

  • Milner P, Bodin P, Loesch A, & Burnstock G. 1990a. Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun 170:649–656.

    Article  PubMed  CAS  Google Scholar 

  • Milner P, Kirkpatrick KA, Ralevic V, Toothill V, Pearson J, & Burnstock G. 1990b. Endothelial cells cultured from human umbilical vein release ATP, substance P and acetyl-choline in response to increased flow. Proc R Soc bond B 241:245–248.

    Article  CAS  Google Scholar 

  • Miyagi Y, Kobayashi S, Nishimura J, Fukui M, & Kanaide H. 1996. Dual regulation of cerebrovascular tone by UTP: P2U receptor-mediated contraction and endothelium-dependent relaxation. Br J Pharmacol 115:847–856.

    Article  Google Scholar 

  • Monopoli A, Conti A, Zocchi C, Casati C, Volpini R, Cristalli G, & Ongini E. 1994. Pharmacology of the new selective A[in2A adenosine receptor agonist 2-hexyl-5’-N-ethylcarboxamidoadenosine Arzneimittelforschung 44:1296–1304.

    CAS  Google Scholar 

  • Olsson RA, & Pearson JD. 1990. Cardiovascular purinoceptors. Physiol Rev 70:761–845.

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Fertige AG, & Moncada S. 1987. Nitric oxide release accounts for the biologactivity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Patel V, Brown C, Goodwin A, Wilkie N, & Boarder MR. 1996. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinocep-tor stimulation of endothelial prostacyclin production. Biochem J 320:221–226.

    PubMed  CAS  Google Scholar 

  • Pelleg A, & Hurt CM. 1996. Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals. J Physiol 490:265–275.

    PubMed  CAS  Google Scholar 

  • Prentice DJ, & Hourani SMO. 1996. Activation of multiple sites by adenosine analogues in the rat isolated aorta. BrJPharmacol 775:1509–1517.

    Google Scholar 

  • Purkiss JR, Wilkinson GF, & Boarder MR. 1994. Differential regulation of inositol 1,4,5-trisphosphate by co-existing P[in2Y-purinoceptors and nucleotide receptors on bovine aortic endothelial cells. BrJ Pharmacol 111:723–728.

    Article  CAS  Google Scholar 

  • Qasabian RA, Schyvens C, Owe-Young R, Killen JP, Macdonald PS, Conigrave AD, & Williamson DJ. 1997. Characterization of the P2 purinoceptors in rabbit pulmonary artery. J Pharmacol 120:553–558.

    CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, & Moncada S. 1987. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058.

    Article  PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, & Moncada S. 1990. An L-arginine: nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sei USA 87:5193–5197.

    Article  CAS  Google Scholar 

  • Ralevic V, & Burnstock G. 1991a. Effects of purines and pyrimidines on the rat mesenteric arterial bed. Circ Res 69:1583–1590.

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, & Burnstock G. 1991b. Roles of P9-purinoceptors in the cardiovascular system. Circulation 84:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, & Burnstock G. 1996a. Interactions between peri vascular nerves and endothelial cells in control of local vascular tone. In: Bennett T, Gardiner SM, ed. Nervous Control of Blood Vessels. Chur, Switzerland: Harwood Academic, pp. 135–175.

    Google Scholar 

  • Ralevic V, & Burnstock G. 1996b. Relative contribution of P2U-and P2Y-purinoceptors to endothelium-dependent vasodilatation in the golden hamster isolated mesenteric arterial bed. Br J Pharmacol 117:1797–1802.

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, & Burnstock G. 1998. Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492.

    PubMed  CAS  Google Scholar 

  • Ralevic V, Milner P, Kirkpatrick KA, & Burnstock G. 1992. Flow-induced release of adenosine 5’-triphosphate from endothelial cells of the rat mesenteric arterial bed. Ex-perientia 48:31–34.

    CAS  Google Scholar 

  • Rubanyi GM, Romero JC, & Vanhoutte PM. 1986. Flow-induced release of endothelium-derived relaxing factor. J Physiol 250.H1145–H1149.

    CAS  Google Scholar 

  • Rubino A, & Burnstock G. 1996. Evidence for a P2-purinoceptor mediating vasoconstriction by UTP, ATP and related nucleotides in the isolated pulmonary vasculature of the rat. Br J Pharmacol 118:1415–1420.

    Article  PubMed  CAS  Google Scholar 

  • Saiag B, Milon D, Allain H, Rault B, & Driessche VD. 1990. Constriction of the smooth muscle of rat tail and femoral arteries and dog saphenous vein is induced by uridine triphosphate via ‘pyrimidinoceptors’, and by adenosine triphosphate via P2X purinocep-tors. Blood Vessels 27:352–364.

    PubMed  CAS  Google Scholar 

  • Saiag B, Milon D, Shacoori V, Allain H, Rault B, & Van Den Driessche J. 1992. Newly evidenced pyrimidinoceptors and the P2X purinoceptors are present on the vascular smooth muscle and respectively mediate the UTP-and ATP-induced contractions of the dog maxillary internal vein. Res Commun Chem Pathol Pharmacol 76:89–94.

    PubMed  CAS  Google Scholar 

  • Saiag B, Bodin P, Shacoori V, Catheline M, Rault B, & Burnstock G. 1995. Uptake and flow-induced release of uridine nucleotides from isolated vascular endothelial cells. En-dothelium 2:279–285.

    CAS  Google Scholar 

  • Schiele JO, & Schwabe U. 1994. Characterization of the adenosine receptor in microvas-cular coronary endothelial cells. Eur J Pharmacol 269:51–58.

    Article  PubMed  CAS  Google Scholar 

  • Simonsen U, Garcia-Sacritsán A, & Prieto D. 1997. Involvement of ATP in the non-adrenergic non-cholinergic inhibitory neurotransmission of lamb isolated coronary small arteries. Br J Pharmacol 120:411–420.

    Article  PubMed  CAS  Google Scholar 

  • Sjöblom-Widfeldt N. 1990. Neuromuscular transmission in blood vessels: phasic and tonic components: An in vitro study of mesenteric arteries of the rat. Ada Physiol Scand-Suppl 138:1–52.

    Article  Google Scholar 

  • Sneddon P, & Burnstock G. 1984. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol 106:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Sobrevia L, Yudilevich DL, & Mann GE. 1997. Activation of A[in2-purinoceptors by adenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J Physiol 499:135–140.

    PubMed  CAS  Google Scholar 

  • Stoggall SM, & Shaw JS. 1990. The coexistence of adenosine A and A2 receptors in guinea-pig aorta. Eur J Pharmacol190:329–335.

    Article  PubMed  CAS  Google Scholar 

  • Stroback D, Olesen S-P, Christopersen P, & Dissing S. 1996. P2-purinoceptor-mediated formation of inositol phosphates and intracellular Ca2+ transients in human coronary artery smooth muscle cells. Br J Pharmacol 118:1645–1652.

    Article  Google Scholar 

  • Su C. 1985. Extracellular functions of nucleotides in heart and blood vessels. Annu Rev Physiol 47:665–616.

    Article  PubMed  CAS  Google Scholar 

  • Szentmiklosi AJ, Ujfalusi A, Cseppento A, Nosztray K, Kovacs P, & Szabo JZ. 1995. Adenosine receptors mediate both contractile and relaxant effects of adenosine in main pulmonary artery of guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 357:417–425.

    Article  Google Scholar 

  • Tesfamariam B, & Cohen RA. 1988. Inhibition of adrenergic vasoconstriction by endothlial cell shear stress. Circ Res 63:120–125.

    Article  Google Scholar 

  • Tsuchiya K, Urabe M, Tamamoto R, Asada Y, & Lee TJ. 1994. Effects of N w-nitro-L-argi-nine and capsaicin on neurogenic vasomotor responses in isolated mesenteric arteries of the monkey. J Pharm Pharmacol 46:155–157.

    Article  PubMed  CAS  Google Scholar 

  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, & Buell G. 1994. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371:516–519.

    Article  PubMed  CAS  Google Scholar 

  • Valera S, Talbot F, Evams RJ, Gos A, Antonarakis SE, Morris SA, & Buell GN. 1995. Characterization and chromosomal localisation of a human P2X receptor from the urinary bladder. Receptor Channels 3:283–289.

    CAS  Google Scholar 

  • Vials A, & Burnstock G. 1993. A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: a role for nitric oxide. Br J Pharmacol 109:424–429.

    Article  PubMed  CAS  Google Scholar 

  • von Kiigelgen I, Haussinger D, & Starke K. 1987. Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn Schmiedebergs Arch Pharmacol 336:556–560.

    Google Scholar 

  • von Kiigelgen I, Schöffel E, & Starke K. 1989. Inhibition by nucleotides acting at presynaptic P2-receptors of sympathetic neuroeffector transmission in the mouse vas deferens. Naunyn Schmiedebergs Arch Pharmacol 340:522–532.

    Google Scholar 

  • von Kiigelgen I, Bultmann R, & Starke K. 1990. Interaction of adenine nucleotides, UTP and suramin in mouse vas deferens: suramin-sensitive and suramin-insensitive components in the contractile effect of ATP. Naunyn Schmiedebergs Arch Pharmacol 342:198–205.

    Article  Google Scholar 

  • von Kiigelgen I, Kurz K, & Starke K. 1993. Axon terminal P2-purinoceptors in feedback control of sympathetic transmitter release. Neuroscience 56:263–267.

    Article  Google Scholar 

  • von Kiigelgen I, Kurz K, & Starke K. 1994a. P2-purinoceptor-mediated autoinhibition of sympathetic transmitter release in mouse and rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 349:125–134.

    Google Scholar 

  • von Kiigelgen I, Spath L, & Starke K. 1994b. Evidence for P2-purinoceptor-mediated autoinhibition of noradrenaline release in rat brain cortex. Br J Pharmacol 115:815–822.

    Article  Google Scholar 

  • von Kiigelgen I, Stoffel D, & Starke K. 1995. Po-purinoceptor-mediated inhibition of noradrenaline release in rat atria. Br J Pharmacol 115:247–254.

    Article  Google Scholar 

  • Webb TE, Feolde E, Vigne P, Neary JT, Runberg A, Frelin C, & Barnard EA. 1996. The P2Y purinoceptor in rat brain microvascular endothelial cells couple to inhibition of adenylate cyclase. Br J Pharmacol 119:1385–1392.

    Article  PubMed  CAS  Google Scholar 

  • Windscheif U, Ralevic V, Baumert HG, Mutschier E, Lambrecht G, & Burnstock G. 1994. Vasoconstrictor and vasodilator responses to various agonists in the rat perfused mesenteric arterial bed: selective inhibition by PPADS of contractions mediated via P2xpurinoceptors. Br J Pharmacol 115:1015–1021.

    Article  Google Scholar 

  • Yang S, Cheek DJ, Westfall DP, & Buxton IL. 1994. Purinergic axis in cardiac blood vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ Res 74:401–407.

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Buxton ILO, Probert CB, Talbot JN, & Bradley ME. 1996. Evidence for a discrete UTP receptor in cardiac endothelial cells. Br J Pharmacol 117:1572–1578.

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin AU, Hoyle CHV, Lambrecht G, Mutschler E, Baaumert HG, & Burnstock G. 1994. Selective antagonism by PPADS at P2x-purinoceptors in rabbit isolated blood vessels. Br J Pharmacol 111:923–929.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ralevic, V., Burnstock, G. (2000). Purinergic Receptors, Nitric Oxide, and Regional Blood Flow. In: Kadowitz, P.J., McNamara, D.B. (eds) Nitric Oxide and the Regulation of the Peripheral Circulation. Nitric Oxide in Biology and Medicine, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1326-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1326-0_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7095-9

  • Online ISBN: 978-1-4612-1326-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics