Skip to main content

Regulation of Intracellular Ca2+ by Cyclic GMP-Dependent Protein Kinase in Vascular Smooth Muscle Cells

  • Chapter
Nitric Oxide and the Regulation of the Peripheral Circulation

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 1))

Abstract

Although nitric oxide (NO)-mediated relaxation of vascular smooth muscle was described several years ago, the downstream effects of NO and the mechanism of relaxation of vascular smooth muscle are still not well understood. NO produced endogenously or from nitrovasodilators such as nitroglycerin or sodium nitro-prusside generates cGMP (Arnold et al. 1977; DeRubertis and Craven 1977; Gruetter et al. 1980) which in turn produces vascular smooth muscle relaxation. There have been several reviews of the roles of NO and cGMP in cellular regulation (Walter 1989; Nathan 1992; Marietta 1993; Lincoln 1994; Lincoln et al. 1996). This article is focused on the effects of cGMP-dependent protein kinase (cGMP kinase), the major receptor protein for cGMP in vascular smooth muscle, and our current understanding on how this enzyme mediates relaxation by lowering intracellular Ca2+ ([Ca2+];).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alioua A, Huggins JP, & Rousseau E. 1995. PKG-I alpha phosphorylates the alpha-subunit and upregulates reconstituted GKCa channels from tracheal smooth muscle. Am J Physiol 268:Ll051–U063.

    Google Scholar 

  • Archer SL, Huang JMC, Hampl V, Nelson DP, Shultz PJ, et al. 1994. Nitric oxide and cGMP cause vasorelaxation by cGMP-kinase-dependent activation of a charybdotoxin-sensitive K channel. Proc NatlAcad Sei USA. 97:7583–7587.

    Article  Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Amurad F. 1977. Nitric oxide activates guanylate cy-clase and increases guanosine 3’’-cyclic monophosphate levels in various tissue preparations. Proc NatlAcad Sei USA. 74:3203–3207.

    Article  CAS  Google Scholar 

  • Beavo JA, & Reifsnyder DH. 1990. Primary sequence of cyclic nucleotide phosphodi-esterase isozymes and the design of selective inhibitors. TIBS 77:150–155.

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, & Freeman BA. 1990.Apparent hy-droxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sei USA 87:1620–1624.

    Article  CAS  Google Scholar 

  • Bird GSJ, Burgess JM, & Putney JW. 1993. Sulfhydryl reagents and cAMP-dependent proein kinase increases the sensitivity of the inositol 1,4,5-triphosphate receptor in hepato-cytes. JBiol Chem 268:17917–17923.

    CAS  Google Scholar 

  • Blatter LA, & Wier WG. 1994. Nitric oxide decreases [Ca++]; in vascular smooth muscle by inhibition of calcium current. Cell Calcium 75:122–131.

    Article  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, & Cohen RA. 1994. Nitric oxide directly activates potassium channels in vascular smooth muscle. Nature 568:850–853.

    Article  Google Scholar 

  • Burgess GM, Bird GSJ, Obie JF, & Putney JWJ. 1991. The mechanism of synergism between phospholipase C-and adenylylcyclase-linked hormones in the liver. Cyclic AMP-dependent kinase augments inositol triphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem 266:4112–4181.

    Google Scholar 

  • Cavallini L, Coassin M, Borean A, & Alexandre A. 1996. Prostacyclin and sodium nitro-prusside inhibit the activity of the platelet inositol 1,4,5-triphosphate receptor and promote its phosphorylation. J Biol Chem 277:5545–5551.

    Google Scholar 

  • Charbonneau H. 1990. Structure-function relationships among cyclic nucleotide phospho-diesterases. In: Beavo JA, and Housley MD, eds. Cyclic Nucleotide Phosphodi-esterases:Structure, Regulation, and Drug Action. West Sussex, England: John Wiley & Sons, p. 267–296.

    Google Scholar 

  • Chen GF, & Cheung DW. 1992. Characterization of acetylcholine-induced membrane hy-perpolarization in endothelial cells. Circ Res 70:251–263.

    Article  Google Scholar 

  • Chen XL, & Rembold CM. 1992. Cyclic nucleotide-dependent regulation of Mn2+ influx, [Ca2+], and arterial smooth muscle relaxation. Am J Physiol 265.C468–C473.

    Google Scholar 

  • Collins P, Griffith TM, Henderson AH, & Lewis MJ. 1986. Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: a cyclic guanosine monophosphate-mediated effect. J Physiol (London) 381:421–431.

    Google Scholar 

  • Cornwell TL, & Lincoln TM. 1989. Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells: reduction of Ca2+ by atriopeptin and 8-bromo-cyclic GMPis mediated by cGMP-dependent protein kinase. J Biol Chem 264:1146–1155.

    PubMed  CAS  Google Scholar 

  • Cornwell TL, Pryzwansky KB, Wyatt TA, & Lincoln TM. 1991. Regulation of sarcoplas-mic reticulum phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol 40:923–931.

    PubMed  CAS  Google Scholar 

  • Cornwell TL, Arnold E, Boerth NJ, & Lincoln TM. 1994. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am JPhysiol 267.C1405–C1413.

    CAS  Google Scholar 

  • DeRubertis FR, & Craven PA. 1977. Activation of the renal cortical and hepatic guanylate cyclase-guanosine 3’ 5’-monophosphate systems by nitrosoureas. Divalent cation requirements and relationship to thiol reactivity. Biochim Biophys Acta 499:331–351.

    Article  Google Scholar 

  • Enouf J, Giraud F, Bredoux R, Bourdeau N, & Levy-Toledano S. 1987. Possible role of a cAMP-dependent phosphorylation in the calcium release mediated by inositol 1,4,5-triphosphate in human platelets membrane vesicles. Biochem Biophys Acta 928:16–82.

    Google Scholar 

  • Felbel J, Trockur B, Ecker T, Landgraf W, & Hofmann F. 1988. Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. JBiol Chem 263:16164–16111.

    Google Scholar 

  • Ferris CD, Cameron AM, Bredt DS, Huganir RL, & Snyder SH. 1991. Inositol 1,4,5-triphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. Biochem Biophys Res Commun 775/192–198.

    Google Scholar 

  • Francis SH, Noblett BD, Todd BW, Wells JN, & Corbin JD. 1988. Relaxation of vascular and trachĂ©al smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 34:506–511.

    PubMed  CAS  Google Scholar 

  • Francis SH, Woodford TA, Wolfe L, & Corbin JD. 1989. Types la and IĂź isozymes of cGMP-dependent protein kinase: alternative mRNA splicing may produce different inhibitory domains. Second Messengers Phosphoproteins 72:301–310.

    Google Scholar 

  • Fujino K, Nakaya S, Wakatsuki T, Miyoshi Y, Hakaya Y, et al. 1991. Effects of nitroglyc-erin on ATP-induced Ca2+ mobilization, Ca2+ activated K+ channels and contraction of cultured smooth muscle cells of porcine coronary artery. J Pharmacol Exp Ther 256:311–311.

    Google Scholar 

  • Furchgott RF. 1988. Studies on relaxation of rabbit aorta by sodium nitrate: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrate and the endothelium derived relaxing factor is nitric oxide. In: Vanhoutte P, ed. Mechanisms of Vasodilation. New York: Raven Press, pp 401–414.

    Google Scholar 

  • Furchgott RF, & Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (London) 288:313–316.

    Article  Google Scholar 

  • Furchgott RF, Zawadzki JV, & Cherry PD. 1981. Role of endothelium in the vasodilator response to acetylcholine. In: Leusen P, Vanhoutte PM, eds. Vasodilation, New York: pp 49–66.

    Google Scholar 

  • Garland CJ, & McPherson GA. 1992. Evidence that nitric oxide does not mediate the hy-perpolarization and relaxation to acetylcholine in the rat mesenteric artery. Br J Pharmacol 105:429–435.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ, et al. 1979. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucl Res 5:211–224.

    CAS  Google Scholar 

  • Gruetter CA, Barry BK, McNamara DB, Kadowitz PJ & Ignarro LJ. 1980. Coronary arterial relaxation and guanylate cyclase activation by cigarette smoke, W-nitrosonornicotine and nitric oxide. J Pharmacol Exp Ther 214:9–15.

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Gao E, Nomura T, Hoek JB, & Thomas AR 1993. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-triphosphate-induced Ca2+ mobilization in permabilized hepatocytes. Biochem J 293:413–422.

    PubMed  CAS  Google Scholar 

  • Hamaguchi M, Ishibashi T, & Imai S. 1991. Involvement of charybdotoxin-sensitive K+ channel in the relaxation of bovine trachĂ©al smooth muscle by glyceryl trinitrate and sodium nitroprusside. J Pharmacol Exp Ther 262:263–210.

    Google Scholar 

  • Hampl V, Huang JM, Weir EK, & Archer SL. 1995. Activation of the cGMP-dependent protein kinase mimics the stimulatory effect of nitric oxide and cGMP on calcium-gated potassium channels. Physiol Res 44:39–44.

    PubMed  CAS  Google Scholar 

  • Hassid A, & Yu Y. 1989. Mechanism of atriopeptin-induced decrease of cytosolic free Cain rat vascular smooth muscle cells: evidence for an intracellular locus of action. J Car-diovasc Pharmacol 74:S34–S38.

    Google Scholar 

  • Hirata M, Kohse KP, Chang C, Ikebe T, & Murad F. 1990. Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J Biol Chem 265:126%-1213.

    Google Scholar 

  • Huggins JP, Cook EA, Piggott JR, Mattinsley TJ, & England PJ. 1989. Phospholamban is a good substrate for cyclic GMP-dependent protein kinase in vitro, but not in intact cardiac or smooth muscle. Biochem J 2(50:829–835.

    Google Scholar 

  • Ignarro LJ, Wood KS, & Wolin MS. 1984. Regulation of purified soluble guanylate cyclase by porphyrins and metalloporphyrins: a unifying concept. Adv Cyclic Nucl Prot Phos-phorylation Res 17:261–214.

    Google Scholar 

  • Ignarro LJ, Byrns RE, Buga GM, & Wood KS. 1987. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologie and chemical properties identical to those of nitric oxide radical. Circ Res 67:866–879.

    Article  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, et al. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys 298:431–431.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Hume JR, & Keef KD. 1993. Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells. Circ Res 75:1128–1137.

    Article  Google Scholar 

  • Jiang H, Colbran JL, Francis SH, & Coribin JD. 1992. Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 2(57:1015–1019.

    Google Scholar 

  • Jin JG, Murthy KS, Grider JR, & Makhlouf GM. 1993. Activation of distinct cAMP-and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells. J Physiol 264:G410–G411.

    Google Scholar 

  • Johnson RM, & Lincoln TM. 1985. Effects of nitroprusside, glyceryl trinitrate and 8-bromo cyclic GMP on phosphorylase a formation and myosin light chain phosphorylation in rat aorta. Mol Pharmacol 27:333–342.

    PubMed  CAS  Google Scholar 

  • Jones LR, & Field LJ. 1993. Residues 2-25 of phospholamban are insufficient to inhibit Ca2+ transport ATPase of cardiac sarcoplasmic reticulum. J Biol Chem 268:11486–11488.

    PubMed  CAS  Google Scholar 

  • Karaki H, Sato K, Ozaki H, & Murakami K. 1988. Effects of sodium nitroprusside on cytosolic calcium level in vascular smooth muscle. Eur J Pharmacol 156:259–266.

    Article  PubMed  CAS  Google Scholar 

  • Karczewski P, Keim M, Hartmann M, & Schrader J. 1992. Role of phospholamban in NO/EDRF-induced relaxation in rat aorta. Life Sei 57:1205–1210.

    Article  Google Scholar 

  • Katsuki S, Arnold WP, & Murad F. 1977. Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucl Res 3:239–241.

    CAS  Google Scholar 

  • Kawada T, Toyosato A, Islam MO, Yoshida Y, & Imai S. 1997. cGMP-kinase mediates cGMP-and cAMP-induced Ca2+ desensitization of skinned rat artery. Eur J Pharmacol 323:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Steenaart NAE, Ferguson DG, & Kranias EG. 1989. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2+-ATPase with phospholamban in phospholipid vesicles. J Biol Chem 265:1702–1709.

    Google Scholar 

  • Koesling D, Herz J, Gausepohl HH, Niroomand F, Hinsch KD, et al. 1988. The primary structure of the 70 KDa subunit of bovine soluble guanylate cyclase. FEBS Lett 239:29–34.

    Article  PubMed  CAS  Google Scholar 

  • Koga T, Yoshida Y, Cai JQ, Islam MO, & Imai S. 1994. Purification and characterization of a 240-kDa cGMP-dependent protein kinase substrate of vascular smooth muscle: close resemblance to inositol 1,4,5-triphosphate receptor. J Biol Chem 269:11640–11647.

    PubMed  CAS  Google Scholar 

  • Komalavilas P, & Lincoln TM. 1994. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem 269:8701–8707.

    PubMed  CAS  Google Scholar 

  • Komalavilas P, & Lincoln TM. 1996. Phosphorylation of the inositol 1,4,5-trisphosphate receptor: cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem 277:21933–21938.

    Google Scholar 

  • Krippeit-Drews P, Norel N, & Godfraind T. 1992. Effect of nitric oxide on membrane potential and contraction of rat aorta. J Cardiovasc Pharmacol 20.S12–S15.

    Article  Google Scholar 

  • Kuo JF, & Greengard P. 1975. Cyclic nucleotide-dependent protein kinase VI. Isolation and partial purification of a protein kinase activated by guanosine 3’5’-monophosphate. JBiol Chem 245:2493–2498.

    Google Scholar 

  • Kwon NS, Stuehr DJ, & Nathan CF. 1991. Inhibition of tumor cell ribonucleotide reduc-tase by macrophage-derived nitric oxide. J Exp Med 174:161–161.

    Article  Google Scholar 

  • Lancaster JR, & Hibbs JB. 1990. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sei USA 87:1223–1221.

    Article  CAS  Google Scholar 

  • Lang D, & Lewis MJ. 1989. Endothelial-derived relaxing factor inhibits the formation of inositol trisphosphate by rabbit aorta. J Physiol (London) 441:45–52.

    Google Scholar 

  • Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, et al. 1992. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087–1089.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TM. 1983. Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther 224:100–107.

    PubMed  CAS  Google Scholar 

  • Lincoln TM. 1991. Pertussis toxin-sensitive and insensitive guanine nucleotide binding proteins (G-proteins) are not phosphorylated by cyclic GMP-dependent protein kinase. Second Messengers Phosphoproteins 13:99–109.

    PubMed  CAS  Google Scholar 

  • Lincoln TM. 1994. Cyclic GMP: Biochemistry, Physiology, and Pathophysiology. Austin, Texas: Landes.

    Google Scholar 

  • Lincoln TM, & Corbin JD. 1983. Characterization and biological role of the cGMP-dependent protein kinase. Adv Cyclic Nucl Res 15:139–192.

    CAS  Google Scholar 

  • Lincoln TM, & Cornwell TL. 1993. Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338.

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Laks JA, & Johnson RM. 1985. Ultraviolet radiation-induced decreases in tension and phosphorylase a formation in rat aorta. J Cyclic Nucl Prot Phosphorylation Res 70:525–533.

    Google Scholar 

  • Lincoln TM, Cornwell TL, Komalavilas P, MacMillan-Crow, LA, & Boerth, N. 1996. The Nitric Oxide-Cyclic GMP Signaling system. Biochemistry of Smooth Muscle Contraction. New York: Academic Press.

    Google Scholar 

  • Lincoln TM, Cornwell TL, & Taylor AE. 1990. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am J Physiol 258.C399–C407.

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Komalavilas P, & Cornwell TL. 1994. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension 23:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann JP, & Watanabe AM. 1988. Mechanisms of Adrenergic and Cholinergic regulation of myocardial contractility. In: Sperelakis, N, ed. Physiology and Pathophysiology of the Heart Norwell, Mass. Kluwer Academic Publishers, pp 423–452.

    Google Scholar 

  • Lohmann SM, & Walter U. 1984. Regulation of cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. Adv Cyclic Nucl Prot Phos-phorylation Res 18:63–117.

    CAS  Google Scholar 

  • Luo DL, Nakazawa M, Ishibashi T, Kato K, & Imai S. 1993. Putative, selective inhibitors of sarcoplasmic reticulum Ca++ pump ATPase inhibit relaxation by nitroglycerin and atrial natriuretic factor of the rabbit aorta contracted by phenylephrine. J Pharmacol Exp Therap 265:1187–1192.

    CAS  Google Scholar 

  • MacMillan-Crow LA, Murphy-Ullrich JE, & Lincoln TM. 1994. Identification and possible localization of cGMP-dependent protein kinase in bovine aortic endothelial cells. Biochem Biophys Res Commun 201:531–537.

    Article  PubMed  CAS  Google Scholar 

  • Magliola L, & Jones AW. 1990. Sodium nitroprusside alters Ca2+ flux components and Ca2+ dependent fluxes of K+ and C1 in rat aorta. J Physiol (London) 421:411–424.

    CAS  Google Scholar 

  • Marietta M. 1993. Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234.

    Google Scholar 

  • McDaniel NL, Chen XL, Singer HA, Murphy RA, & Rembold CM. 1992. Nitrovasodila-tors relax arterial smooth muscle by decreasing [Ca2+]j and uncoupling stress from myosin phosphorylation. Am J Physiol 263:C46l-C467.

    Google Scholar 

  • Meisheri KD, Taylor CJ, & Saneii H. 1986. Synthetic atrial peptide inhibits intracellular calcium release in smooth muscle. Am J Physiol 250.C171–C174.

    PubMed  CAS  Google Scholar 

  • Meisheri KD, Cipkus-Dubray L, Hosner JM, & Khan SA. 1991. Nicorandil-induced va-sorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol 77:903–912.

    Article  Google Scholar 

  • Mery P, Lohmann SM, Walter U, & Fischmeister R. 1991. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc NatlAcad Sei USA 88:1197–1201.

    Article  CAS  Google Scholar 

  • Moncada S, & Higgs A. 1993. The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012.

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, & Makhlouf GM. 1995. Interaction of cA-kinase and cG-kinase in mediating relaxation of dispersed smooth muscle cells. Am J Physiol 268:C171–C180.

    PubMed  CAS  Google Scholar 

  • Murthy KS, Severi C, Grider JR, & Makhlouf GM. 1993. Inhibition of IP3 and IP3-dependent Ca2+ mobilization by cyclic nucleotides in isolated gastric muscle cells. Am J Physiol 264.G961–G914.

    Google Scholar 

  • Nakade S, Rhee SK, Hamanaka H, & Mikoshiba K. 1994. Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (Type I) increases Ca[su2+ flux in reconstituted lipid vesicles. J Biol Chem 269:6135–6142.

    Google Scholar 

  • Nakane M, Saheki S, Kuno T, Ishii K, & Murad F. 1988. Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. Biochem Biophys Res Commun 757:1139–1147.

    Article  Google Scholar 

  • Nakane M, Arai K, Saheki S, Kuno T, Buechler W, et al 1990. Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265:16841–16845.

    PubMed  CAS  Google Scholar 

  • Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064.

    PubMed  CAS  Google Scholar 

  • Nishimura J, & van Breemen C. 1989. Direct regulation of smooth muscle contractile elements by second messengers. Biochem Biophys Res Commun765:929–935.

    Article  Google Scholar 

  • Orstavik S, Sandberg M, Berube D, Natarajan V, Simard J, et al. 1992. Localization of the human gene for the type I cyclic GMP-dependent protein kinase to chromosome 10. Cy-togenet Cell Genet 59:270–273.

    Article  CAS  Google Scholar 

  • Palmer RMJ, Fertige AG, & Moncada S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Palmer RMJ, & Ashton DS, Moncada S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A, Nurnberg B, Kamm S, Uhde M, & Schultz G. 1995. Cyclic GMP-dependent protein kinase blocks pertussis toxin-sensitive hormone receptor signaling pathways in Chinese hamster ovary cells. J Biol Chem 270:9052–9059.

    Article  PubMed  CAS  Google Scholar 

  • Pfitzer G, Ruegg JC, Flockerzi V, & Hofmann F. 1982. cGMP-dependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett 149:111–115.

    Article  Google Scholar 

  • Pryzwansky KB, Wyatt TA, Nichols H, & Lincoln TM. 1990. Compartmentalization of cyclic GMP-dependent protein kinase in formyl-peptide stimulated neutrophils. Blood 76:612–618.

    PubMed  CAS  Google Scholar 

  • Quignard JF, Frapier JM, Harricane MC, Albat B, Nargeot J, et al. 1997. Voltage-gated calcium channel currents in human-coronary myocytes. J Clin Invest 99:185–193.

    Article  PubMed  CAS  Google Scholar 

  • Quinton TM, & Dean WL. 1992. Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-triphosphate receptor inhibits Ca2+ release from platelet membranes. Biochem Biophys Res Commun 754:893–899.

    Article  Google Scholar 

  • Raeymaekers L, Hofmann F, & Casteels R. 1988. Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem J 252:269–273.

    PubMed  CAS  Google Scholar 

  • Rapoport RM. 1986. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res 58:401–4X0.

    Article  Google Scholar 

  • Rashatwar SS, Cornwell TL, & Lincoln TM. 1987. Effects of 8-bromo-cGMP on Ca[su2+ levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase. Proc NatlAcad Sei USA 84:5685–5689.

    Article  CAS  Google Scholar 

  • Robertson BE, Schubert R, Hescheler J, & Nelson MT. 1993. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265.C299–C303.

    PubMed  CAS  Google Scholar 

  • Ruth P, Wang G-X, Boekhoff I, May B, Pfeifer A, et al. 1993. Transfected cGMP-dependent protein kinase suppresses calcium transient by inhibition of inositol 1,4,5-trisphosphate production. Proc NatlAcad Sei USA 90:2623–2621.

    Article  CAS  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, et al. 1993. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:1240–1244.

    Article  Google Scholar 

  • Sarcevic B, Brookes V, Martin TJ, Kemp BE, & Robinson PJ. 1989. Atrial natriuretic peptide-dependent phosphorylation of smooth muscle cell particulate fraction proteins is mediated by cGMP-dependent protein kinase. J Biol Chem 264:20648–20654.

    PubMed  CAS  Google Scholar 

  • Sasaki T, Inui M, Kimura Y, Kuzuya T, & Tada M. 1992. Molecular mechanisms of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem 267:1674–1679.

    PubMed  CAS  Google Scholar 

  • Schmidt HW, Klein MM, Niroomand F, & Bohme E. 1988. Is arginine a physiological precursor for endothelium-derived nitric oxide? Eur J Pharmacol 148:293–295.

    Article  PubMed  CAS  Google Scholar 

  • Schultz KD, Schultz K, & Schultz G. 1977. Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265:750–751.

    Article  PubMed  CAS  Google Scholar 

  • Schultz S, Chinkers M, & Garbers DL. 1989. The guanylate cyclase/receptor family of proteins. FASEB J 3:2026–2035.

    Google Scholar 

  • Stockand JD, & Sansom SC. 1996. Mechanism of activation by cGMP-dependent protein kinase of large Ca(2+)-activated K+ channels in mesangial cells. J Physiol 277.C1669–C1677.

    Google Scholar 

  • Supattapone S, Danoff SK, Thiebert A, Joseph SK, Steiner J, et al. 1988. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl Acad. Sci. USA 85:8747–8750.

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Kaibuchi K, Matsubara T, & Nishizuka Y. 1981. Inhibitory action of guanosine 3’ 5’-monophosphate on thrombin-induced phosphatidylinositol turnover and protein phosphorylation in human platelets. Biochem Biophys Res Commun 101:61–67.

    Article  PubMed  CAS  Google Scholar 

  • Tare M, Parkington HC, Coleman HA, Neild TO, & Dusting GJ. 1990. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the en-dothelium. Nature 346:69–11.

    Article  PubMed  CAS  Google Scholar 

  • Thornbury KD, Ward SM, Dalziel HH, Carl A, Westfall DP, et al. 1991. Nitric oxide and nitrosocysteine mimic nonadrenergic noncholinergic hyperpolarization in canine proximal colon. Am J Physiol 267:G553–G557.

    Google Scholar 

  • Tohse N, & Sperelakis N. 1991. cGMP inhibits the activity of single calcium channels in embryonic chick heart cells. Circ Res 69:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Twort CHC, & van Breemen C. 1988. Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle. Circ Res 62:961–964.

    Article  PubMed  CAS  Google Scholar 

  • Uhler M. 1993. Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J. Biol. Chem. 268:13586–13591.

    PubMed  CAS  Google Scholar 

  • Vrolix M, Raeymaekers L, Wuytack F, Hofmann F, & Casteels R. 1988. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. Biochem J 255:855–863.

    PubMed  CAS  Google Scholar 

  • Waldman SA, & Murad F. 1987. Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196.

    PubMed  CAS  Google Scholar 

  • Walter U. 1988. Distribution of cyclic GMP-dependent protein kinase in various rat tissues and cell lines determined by a sensitive and specific radioimmunoassay. Eur J Biochem 118:339–346.

    Article  Google Scholar 

  • Walter U. 1989. Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 773:41–88.

    Article  Google Scholar 

  • Ward SM, Dalziel HH, Bradley ME, Buxton IL, Keef K, et al. 1992. Involvement of cyclic GMP in non-adrenergic, non-cholinergic inhibitory neurotransmission in dog proximal colon. BrJ Pharmacol 107:1075–1082.

    Article  CAS  Google Scholar 

  • Weishaar RE. 1987. Multiple forms of phosphodiesterase: an overview. J Cyclic Nucl Prot Phosphorylation Res 11:463–472.

    CAS  Google Scholar 

  • Welling A, Felbel J, Peper K, & Hofmann F. 1992. Hormonal regulation of calcium current in freshly isolated airway smooth muscle cells. Am J Physiol 262.L351–L359.

    PubMed  CAS  Google Scholar 

  • Wernet W, Flockerzi V, & Hofmann F. 1989. The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251:191–196.

    Article  PubMed  CAS  Google Scholar 

  • White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, et al. 1993. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphoryla-tion. Nature 361:263–266.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Sun HT, Cai JQ, & Imai S. 1991. Cyclic GMP-dependent protein kinase stimulates the plasma membrane Ca2+ pump ATPase of vascular smooth muscle via phos-phorylation of a 240 kDa protein. J Biol Chem 266:19819–19825.

    PubMed  CAS  Google Scholar 

  • Zhou XB, Ruth P, Schlossmann J, Hofmann F, & Korth M. 1996. Protein phosphatase 2A is essential for the activation of Ca2+activated currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J Biol Chem 271:19760–19767.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komalavilas, P., Lincoln, T.M. (2000). Regulation of Intracellular Ca2+ by Cyclic GMP-Dependent Protein Kinase in Vascular Smooth Muscle Cells. In: Kadowitz, P.J., McNamara, D.B. (eds) Nitric Oxide and the Regulation of the Peripheral Circulation. Nitric Oxide in Biology and Medicine, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1326-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1326-0_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7095-9

  • Online ISBN: 978-1-4612-1326-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics