Skip to main content

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 1))

  • 69 Accesses

Abstract

The regulation of renal blood flow is of vital importance to the overall control of renal function and, thus, to the maintenance of body fluid and electrolyte homeostasis. Among the many factors regulating blood flow to the kidney, the contributing roles of various intrarenal paracrine systems and their complex interactions are of paramount importance (Navar et al. 1996). Over the past decade, an enormous amount of research has established nitric oxide (NO) as an important regulator of renal hemodynamics and excretory function (Navar et al. 1996; Kone and Baylis 1997; Majid and Navar 1997; Mattson et al. 1997). In the kidney, NO interacts with vascular smooth muscle and with mesangial, juxtaglomerular, and tubular cells to profoundly affect vascular and tubular function (Navar et al. 1996; Kone and Baylis 1997). In this chapter, we have focused on the importance of intrarenal NO in the regulation of renal vascular resistance and its influence on the renal autoregulatory mechanism. In addition to the direct effects of NO, we also discuss the various interactions of NO with other renal paracrine factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams J. 1987. A symposium: nitroglycerin therapy—a contemporary perspective. Am J Cardiol 60:1H–3H.

    Article  Google Scholar 

  • Alberola AM, Salazar FJ, Nakamura T, & Granger JR 1994. Interaction between an-giotensin II and nitric oxide in control of renal hemodynamics in conscious dogs. Am J Physiol (Regul Integr Comp Physiol 36) 267:R1472–R1478.

    CAS  Google Scholar 

  • Bachmann S, & MĂĽndel P. 1994. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis 24:112–129.

    PubMed  CAS  Google Scholar 

  • Bachmann S, Bosse HM, & Mundel P. 1995. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 37) 265:F885–F898.

    Google Scholar 

  • Baer PG, Navar LG, & Guyton AC. 1970. Renal autoregulation, filtration rate, and electrolyte excretion during vasodilatation. Am J Physiol 219:619–625.

    PubMed  CAS  Google Scholar 

  • Baker R, Majid DSA, Godfrey M, & Navar LG. 1995. Modulation of renal responses to an-giotensin II (ANG II) by nitric oxide (NO). FASEB J. 9:A843.

    Google Scholar 

  • Bank N, Aynedjian HS, & Khan GA. 1994. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension 24:322–328.

    Article  PubMed  CAS  Google Scholar 

  • Baumann JE, Persson PB, Ehmke H, Nafz B, & Kirchheim HR. 1992. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Am J Physiol (Renal Fluid Electrolyte Physiol 32) 263:F208–F213.

    CAS  Google Scholar 

  • Baylis C, Harton P, & Engels K. 1990. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol 1:875-881.

    Google Scholar 

  • Baylis C, Mitruka B, & Deng A. 1992. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Baylis C, Engels K, Samsell L, & Harton P. 1993. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. Am J Physiol (Renal Fluid Electrolyte Physiol 33) 264:F14–F7S.

    Google Scholar 

  • Baylis C, Harvey J, & Engels K. 1994. Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of angiotensin II. J Am Soc Nephrol 5:211–214.

    PubMed  CAS  Google Scholar 

  • Bech JN, Nielsen CB, & Pedersen EB. 1996. Effects of systemic NO synthesis inhibition on RPF, GFR, UNa and vasoactive hormones in healthy humans. Am J Physiol (Renal Fluid Electrolyte Physiol 39) 270:F845–F851.

    CAS  Google Scholar 

  • Beierwaltes WH, Sigmon DH, & Carretero OA. 1992. Endothelium modulates renal blood flow but not autoregulation. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 262.F943–F949.

    CAS  Google Scholar 

  • Biondi ML, Bolterman RJ, & Romero JC. 1992. Zonal changes of guanidine 3’,5’-cyclic monophosphate related to endothelium-derived relaxing factor in dog renal medulla. Renal Physiol Biochem 15:16–22.

    PubMed  CAS  Google Scholar 

  • Braam B, & Koomans HA. 1995. Reabsorption of nitro-L-arginine infused into the late proximal tubule participates in modulation of TGF responsiveness. Kidney Int 47:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  • Brezis M, Heyman SN, Dinour D, Epstein FH, & Rosen S. 1991. Role of nitric oxide in renal medullary oxygenation: studies in isolated and intact rat kidneys. J Clin Invest 88:390–395.

    Article  PubMed  CAS  Google Scholar 

  • Carmines PK, Inscho EW, & Gensure RC. 1990. Arterial pressure effects on preglomeru-lar micro-vasculature of juxtamedullary nephrons. Am J Physiol 258: F94–F102.

    PubMed  CAS  Google Scholar 

  • Chen C, Mitchell KD, & Navar LG. 1992. Role of endothelium-derived nitric oxide in the renal hemodynamic response to amino acid infusion. Am J Physiol (Regul Integrative Comp Physiol 32) 263:R510–R516.

    CAS  Google Scholar 

  • Cooke JP, & Dzau VJ. 1997. Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509.

    Article  PubMed  CAS  Google Scholar 

  • Deng A, & Baylis C. 1993. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol (Renal Fluid Electrolyte Physiol 33) 264:F212–F215.

    CAS  Google Scholar 

  • Denton KM, & Anderson WP. 1994. Intrarenal haemodynamic and glomerular respnses to inhibition of nitric oxide formation in rabbits. J Physiol 475:159–167.

    PubMed  CAS  Google Scholar 

  • Edwards RM, & Trizna W. 1993. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors. J Am Soc Nephrol 4:1127–1132.

    PubMed  CAS  Google Scholar 

  • Eisner D, Muntze A, Kromer EP, & Riegger GAJ. 1992. Inhibition of synthesis of endothelium-derived nitric oxide in conscious dogs: hemodynamic, renal, and hormonal effects. Am J Hypertens 5:288–291.

    CAS  Google Scholar 

  • Evans RG, Rankin AJ, & Anderson WP 1994. Interactions of blockade of nitric oxide synthase and angiotensin-converting enzyme on renal function in conscious rabbits. J Car-diovasc Pharmacol 24:542–551.

    Article  CAS  Google Scholar 

  • Fenoy FJ, Ferrer P, Carbonell L, & Garcia-Salom M. 1995. Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 25:408–414.

    Article  PubMed  CAS  Google Scholar 

  • Hajj-ali AF, & Zimmerman BG. 1991. Kinin contribution to renal vasodilator effect of cap-topril in rabbit. Hypertension 17:504–509.

    Article  PubMed  CAS  Google Scholar 

  • Hoffend J, Cavarape A, Endlich K, & Steinhausen M. 1993. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation. Am J Physiol (Renal Fluid Electrolyte Physiol 34) 265:F285–F292.

    CAS  Google Scholar 

  • Ichihara A, Inscho EW, Imig JD, & Navar LG. 1998. Neuronal nitric oxide synthase modulates rat renal microvascular function. Am J Physiol (Renal Physiol 43) 274: F516–24.

    Google Scholar 

  • Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, & Gruetter CA. 1981. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218:139–749.

    Google Scholar 

  • Imig JD, & Roman RJ. 1992. Nitric oxide modulates vascular tone in preglomerular arte-rioles. Hypertension 19:770–774.

    Article  PubMed  CAS  Google Scholar 

  • Imig JD, Gebremedhin D, Harder DR, & Roman RJ. 1993. Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF. Am J Physiol (Heart Circ Physiol 33) 264:H190–H195.

    CAS  Google Scholar 

  • Ito S, & Ren Y. 1993. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J Clin Invest 92:1093–1098.

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Johnson CS, & Carretero OA. 1991. Modulation of angiotensin II-induced vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 87:1656–1663.

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Arima S, Ren YL, Juncos LA, & Carretero OA. 1993. Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 91:2012–2019.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, & Brenner BM. 1991. Endothelium-derived vasoactive factors and the renal vas-culature. Am J Physiol 260:R653–R662.

    PubMed  CAS  Google Scholar 

  • Kiyomoto H, Matsuo H, Tamaki T, Aki Y, Hong H, Iwao H, & Abe Y, 1992. Effect of L-N G-nitro-arginine, inhibitor of nitric oxide synthesis, on autoregulation of renal blood flow in dogs. Jpn J Pharmacol 58:147–155.

    Article  PubMed  CAS  Google Scholar 

  • Kone BC, & Baylis C. 1997. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 41) 272:F561–F578.

    CAS  Google Scholar 

  • Kumagai K, Suzuki H, Ichikawa M, Jimbo M, Murakami M, Ryuzaki M, & Saruta T. 1994. Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system. Hypertension 24:220–226.

    Article  PubMed  CAS  Google Scholar 

  • Lahera V, Salom MG, Fiksen-Olsen MJ, Raij L, & Romero JC. 1990. Effects of N G-monomethyl-l-arginine and l-arginine on acetylcholine renal response. Hypertension 15:659–663.

    Article  PubMed  CAS  Google Scholar 

  • Lahera V, Salom MG, Fiksen-Olsen MJ, & Romero JC. 1991. Mediatory role of endothelium-derived nitric oxide in renal vasodilatory and excretory effects of bradykinin. Am J Hypertens 4:260–262.

    PubMed  CAS  Google Scholar 

  • Lamas S, Marsden PA, Li GK, Tempst P, & Michel T. 1992. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89:6348–6352.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart JC, Larson TS, & Knox FG. 1994. Perfusion pressure and volume status determine the microvascular response of the rat kidney to N G-monomethyl-L-arginine. Circ Res 75:829–835.

    Article  PubMed  CAS  Google Scholar 

  • Majid DSA, & Navar LG. 1992. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 262:F40–F46.

    CAS  Google Scholar 

  • Majid DSA, & Navar LG. 1994. Blockade of distal nephron sodium transport attenuates pressure natriuresis in dogs. Hypertension 23:1040–1045.

    Article  PubMed  CAS  Google Scholar 

  • Majid DSA, & Navar LG. 1996. Medullary blood flow responses to changes in arterial pressure in canine kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 39) 270: F833–F838.

    CAS  Google Scholar 

  • Majid DSA, & Navar LG. 1997. Nitric oxide in the mediation of pressure natriuresis. Clin Exp Pharmacol Physiol 24:595–599.

    Article  PubMed  CAS  Google Scholar 

  • Majid DSA, Williams A, Kadowitz PJ, & Navar LG. 1993a. Renal responses to intra-arterial administration of nitric oxide donor in dogs. Hypertension 22:535–541.

    Article  PubMed  CAS  Google Scholar 

  • Majid DSA, Williams A, & Navar LG. 1993b. Inhibition of nitric oxide synthesis attenuates pressure-induced natriuretic responses in anesthetized dogs. Am J Physiol (Renal Fluid Electrolyte Physiol 33) 264:F79–F87.

    CAS  Google Scholar 

  • Majid DSA, Godfrey M, Grisham MB, & Navar LG. 1995. Relation between pressure natriuresis and urinary excretion of nitrate/nitrite in anesthetized dogs. Hypertension 25 (Part 2:860–865.

    Google Scholar 

  • Majid DSA, Omoro SA, & Godfrey M, et al. 1996. Assessment of differential intrarenal blood flow responses using single fiber laser-Doppler flowmetry. [Abstract] J Am Soc Nephrol 7:1584.

    Google Scholar 

  • Majid DSA, Godfrey M, & Navar, LG. 1997a. Pressure natriuresis and renal medullary blood flow in dogs. Hypertension 29:1051–1057.

    Article  PubMed  CAS  Google Scholar 

  • Majid DSA, Godfrey M, & Omoro, SA. 1997b. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney. Hypertension 29 (Part 2):210–215.

    Google Scholar 

  • Manning RD Jr, Hu L, Mizelle HL, & Granger JP. 1993a. Role of nitric oxide in long-term angiotensin II-induced renal vasoconstriction. Hypertension 21:949–955.

    Article  PubMed  CAS  Google Scholar 

  • Manning RD Jr, Hu L, Mizelle HL, Montani J-P, & Norton MW. 1993b. Cardiovascular responses to long-term blockade of nitric oxide synthesis. Hypertension 22:40–48.

    Article  PubMed  CAS  Google Scholar 

  • Marshall JJ, & Kontos HA. 1990. Endothelium-derived relaxing factors—a perspective from in vivo data. Hypertension 16:371–386.

    Article  PubMed  CAS  Google Scholar 

  • Mattson DL, Roman RJ, & Cowley AW Jr. 1992. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 19:766–769.

    Article  PubMed  CAS  Google Scholar 

  • Mattson DL, Lu S, & Cowley AW Jr. 1997. Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharmacol Physiol 24: 587–590.

    Article  PubMed  CAS  Google Scholar 

  • Mattson DL, Lu S, Roman RJ, & Cowley AW Jr. 1993. Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol (Regul In-tegrative Comp Physiol 33) 264:R578–R583.

    CAS  Google Scholar 

  • Moncada S, Palmer RMJ, & Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142.

    PubMed  CAS  Google Scholar 

  • Navar LG, Inscho EW, Majid DSA, Imig JD, Harrison-Bernard LM, & Mitchell KD. 1996. Paracrine regulation of the renal microcirculation. Physiol Rev 76:425–536.

    PubMed  CAS  Google Scholar 

  • Ohishi K, Carmines PK, Inscho EW, & Navar LG. 1992. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles. Am J Physiol (Renal Fluid Electrolyte Physiol 32) 263.F900–F906.

    CAS  Google Scholar 

  • Perrella MA, Hildebrand FL Jr, Margulies KB, & Burnett JC Jr. 1991. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function. Am J Physiol (Regul Integrative Comp Physiol 30) 261:R323–R328.

    CAS  Google Scholar 

  • Pucci ML, Lin L, & Nasjletti A. 1992. Pressor and renal vasoconstrictor effects of N G-nitro-L-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin, prostanoids and vasopressin. J Pharmacol Exp Ther 261:240–245.

    PubMed  CAS  Google Scholar 

  • Qiu C, Engels K, & Baylis C. 1994. Angiotensin II and ₱-adrenergic tone in chronic nitric oxide blockade-induced hypertension. Am J Physiol (Renal Fluid Electrolyte Physiol 35):266:R1470–R1476.

    CAS  Google Scholar 

  • Roman RJ, Cowley AW Jr, Garcia-Estan J, & Lombard JH. 1988. Pressure-diuresis in volume-expanded rats: cortical and medullary hemodynamics. Hypertension 12: 168–176.

    Article  PubMed  CAS  Google Scholar 

  • Salazar FJ, Pinilla JM, Lopez F, Romero JC, & Quesada T. 1992. Renal effects of prolonged synthesis inhibition of endothelium-derived nitric oxide. Hypertension 20:113–117.

    Article  PubMed  CAS  Google Scholar 

  • Salom MG, Lahera V, Miranda-Guardiola F, & Romero JC. 1992. Blockade of pressure na-triuresis induced by inhibition of renal synthesis of nitric oxide in dogs. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 262:F718–F722.

    CAS  Google Scholar 

  • Shultz PJ, Archer SL, & Rosenberg ME. 1994. Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells. Kidney Int 46:683–689.

    Article  PubMed  CAS  Google Scholar 

  • Sigmon DH, & Beierwaltes WH. 1993. Angiotensin II: nitric oxide interaction and the distribution of blood flow. Am J Physiol (Regul Integrative Comp Physiol 34) 265:R1276–R1283.

    CAS  Google Scholar 

  • Sigmon DH, Carretero OA, & Beierwaltes WH. 1992a. Angiotensin dependence of endothelium-mediated renal hemodynamics. Hypertension 20:643–650.

    Article  PubMed  CAS  Google Scholar 

  • Sigmon DH, Carretero OA, & Beierwaltes WH. 1992b. Plasma renin activity and the renal response to nitric oxide synthesis inhibition. J Am Soc Nephrol 3:1288–1294.

    PubMed  CAS  Google Scholar 

  • Sigmon DH, Carretero OA, & Beierwaltes WH. 1993. Renal versus femoral hemodynamic response to endothelium-derived relaxing factor synthesis inhibition. J Vasc Res 30:218–223.

    Article  PubMed  CAS  Google Scholar 

  • Sonntag M, Deussen A, & Schrader J. 1992. Role of nitric oxide in local blood flow control in the anaesthetized dog. P flĂĽgers Arch 420:194–199.

    Article  CAS  Google Scholar 

  • Star RA. 1997. Intrarenal localization of nitric oxide synthase isoforms and soluble guany-lyl cyclase. Clin Exp Pharmacol Physiol 24:607–610.

    Article  PubMed  CAS  Google Scholar 

  • Takenaka T, Mitchell KD, & Navar LG. 1993. Contribution of angiotensin II to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat. J Am Soc Nephrol 4:1046–1053.

    PubMed  CAS  Google Scholar 

  • Thorup C, & Persson AEG. 1994. Inhibition of locally produced nitric oxide resets tubu-loglomerular feedback mechanism. Am J Physiol (Renal Fluid Electrolyte Physiol 36) 267:F606–F611.

    CAS  Google Scholar 

  • Ujiie K, Drewett JG, Yuen PST, & Star RA. 1993. Differential expression of mRNA for guanylyl cyclase-linked endothelium-derived relaxing factor receptor subunits in rat kidney. J Clin Invest 91:730–734.

    Article  PubMed  CAS  Google Scholar 

  • Vallon V, & Thomson S. 1995. Inhibition of local nitric oxide synthase increases homeo-static efficiency of tubuloglomerular feedback. Am J Physiol (Renal Fluid Electrolyte Physiol 38) 269:F892–F899.

    CAS  Google Scholar 

  • Wilcox CS, & Welcb WJ. 1996. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension. Kidney Int 49 (suppl 55):S-9-S-13.

    Google Scholar 

  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, & Schmidt HHHW. 1992. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 89:11993–11997.

    Article  PubMed  CAS  Google Scholar 

  • Xie Q-W, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, & Nathan C, 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228.

    Article  PubMed  CAS  Google Scholar 

  • Yukimura T, Yamashita Y, Miura K, Okumura M, Yamanaka S, & Yamamoto K. 1992. Renal effects of the nitric oxide synthase inhibitor, L-N G-nitroarginine, in dogs. Am J Hy-pertens 5:484–487.

    CAS  Google Scholar 

  • Zatz R, & De Nucci G. 1991. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol (Renal Fluid Electrolyte Physiol 30) 261:F360–F363.

    CAS  Google Scholar 

  • Zou A-P, & Cowley AW Jr. 1997. Nitric oxide in renal cortex and medulla. An in vivo mi-crodialysis study. Hypertension 29 (part 2): 194–198.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Majid, D.S.A., Navar, L.G. (2000). Role of Nitric Oxide in the Regulation of Renal Blood Flow. In: Kadowitz, P.J., McNamara, D.B. (eds) Nitric Oxide and the Regulation of the Peripheral Circulation. Nitric Oxide in Biology and Medicine, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1326-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1326-0_19

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7095-9

  • Online ISBN: 978-1-4612-1326-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics