Role of Nitric Oxide in the Regulation of Renal Blood Flow

  • Dewan S. A. Majid
  • L. Gabriel Navar
Part of the Nitric Oxide in Biology and Medicine book series (NOBM, volume 1)

Abstract

The regulation of renal blood flow is of vital importance to the overall control of renal function and, thus, to the maintenance of body fluid and electrolyte homeostasis. Among the many factors regulating blood flow to the kidney, the contributing roles of various intrarenal paracrine systems and their complex interactions are of paramount importance (Navar et al. 1996). Over the past decade, an enormous amount of research has established nitric oxide (NO) as an important regulator of renal hemodynamics and excretory function (Navar et al. 1996; Kone and Baylis 1997; Majid and Navar 1997; Mattson et al. 1997). In the kidney, NO interacts with vascular smooth muscle and with mesangial, juxtaglomerular, and tubular cells to profoundly affect vascular and tubular function (Navar et al. 1996; Kone and Baylis 1997). In this chapter, we have focused on the importance of intrarenal NO in the regulation of renal vascular resistance and its influence on the renal autoregulatory mechanism. In addition to the direct effects of NO, we also discuss the various interactions of NO with other renal paracrine factors.

Keywords

Angiotensin Epinephrine Acetylcholine Vasopressin Furosemide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams J. 1987. A symposium: nitroglycerin therapy—a contemporary perspective. Am J Cardiol 60:1H–3H.CrossRefGoogle Scholar
  2. Alberola AM, Salazar FJ, Nakamura T, & Granger JR 1994. Interaction between an-giotensin II and nitric oxide in control of renal hemodynamics in conscious dogs. Am J Physiol (Regul Integr Comp Physiol 36) 267:R1472–R1478.Google Scholar
  3. Bachmann S, & Mündel P. 1994. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis 24:112–129.PubMedGoogle Scholar
  4. Bachmann S, Bosse HM, & Mundel P. 1995. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 37) 265:F885–F898.Google Scholar
  5. Baer PG, Navar LG, & Guyton AC. 1970. Renal autoregulation, filtration rate, and electrolyte excretion during vasodilatation. Am J Physiol 219:619–625.PubMedGoogle Scholar
  6. Baker R, Majid DSA, Godfrey M, & Navar LG. 1995. Modulation of renal responses to an-giotensin II (ANG II) by nitric oxide (NO). FASEB J. 9:A843.Google Scholar
  7. Bank N, Aynedjian HS, & Khan GA. 1994. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension 24:322–328.PubMedCrossRefGoogle Scholar
  8. Baumann JE, Persson PB, Ehmke H, Nafz B, & Kirchheim HR. 1992. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Am J Physiol (Renal Fluid Electrolyte Physiol 32) 263:F208–F213.Google Scholar
  9. Baylis C, Harton P, & Engels K. 1990. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol 1:875-881.Google Scholar
  10. Baylis C, Mitruka B, & Deng A. 1992. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281.PubMedCrossRefGoogle Scholar
  11. Baylis C, Engels K, Samsell L, & Harton P. 1993. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. Am J Physiol (Renal Fluid Electrolyte Physiol 33) 264:F14–F7S.Google Scholar
  12. Baylis C, Harvey J, & Engels K. 1994. Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of angiotensin II. J Am Soc Nephrol 5:211–214.PubMedGoogle Scholar
  13. Bech JN, Nielsen CB, & Pedersen EB. 1996. Effects of systemic NO synthesis inhibition on RPF, GFR, UNa and vasoactive hormones in healthy humans. Am J Physiol (Renal Fluid Electrolyte Physiol 39) 270:F845–F851.Google Scholar
  14. Beierwaltes WH, Sigmon DH, & Carretero OA. 1992. Endothelium modulates renal blood flow but not autoregulation. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 262.F943–F949.Google Scholar
  15. Biondi ML, Bolterman RJ, & Romero JC. 1992. Zonal changes of guanidine 3’,5’-cyclic monophosphate related to endothelium-derived relaxing factor in dog renal medulla. Renal Physiol Biochem 15:16–22.PubMedGoogle Scholar
  16. Braam B, & Koomans HA. 1995. Reabsorption of nitro-L-arginine infused into the late proximal tubule participates in modulation of TGF responsiveness. Kidney Int 47:1252–1257.PubMedCrossRefGoogle Scholar
  17. Brezis M, Heyman SN, Dinour D, Epstein FH, & Rosen S. 1991. Role of nitric oxide in renal medullary oxygenation: studies in isolated and intact rat kidneys. J Clin Invest 88:390–395.PubMedCrossRefGoogle Scholar
  18. Carmines PK, Inscho EW, & Gensure RC. 1990. Arterial pressure effects on preglomeru-lar micro-vasculature of juxtamedullary nephrons. Am J Physiol 258: F94–F102.PubMedGoogle Scholar
  19. Chen C, Mitchell KD, & Navar LG. 1992. Role of endothelium-derived nitric oxide in the renal hemodynamic response to amino acid infusion. Am J Physiol (Regul Integrative Comp Physiol 32) 263:R510–R516.Google Scholar
  20. Cooke JP, & Dzau VJ. 1997. Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509.PubMedCrossRefGoogle Scholar
  21. Deng A, & Baylis C. 1993. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol (Renal Fluid Electrolyte Physiol 33) 264:F212–F215.Google Scholar
  22. Denton KM, & Anderson WP. 1994. Intrarenal haemodynamic and glomerular respnses to inhibition of nitric oxide formation in rabbits. J Physiol 475:159–167.PubMedGoogle Scholar
  23. Edwards RM, & Trizna W. 1993. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors. J Am Soc Nephrol 4:1127–1132.PubMedGoogle Scholar
  24. Eisner D, Muntze A, Kromer EP, & Riegger GAJ. 1992. Inhibition of synthesis of endothelium-derived nitric oxide in conscious dogs: hemodynamic, renal, and hormonal effects. Am J Hypertens 5:288–291.Google Scholar
  25. Evans RG, Rankin AJ, & Anderson WP 1994. Interactions of blockade of nitric oxide synthase and angiotensin-converting enzyme on renal function in conscious rabbits. J Car-diovasc Pharmacol 24:542–551.CrossRefGoogle Scholar
  26. Fenoy FJ, Ferrer P, Carbonell L, & Garcia-Salom M. 1995. Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 25:408–414.PubMedCrossRefGoogle Scholar
  27. Hajj-ali AF, & Zimmerman BG. 1991. Kinin contribution to renal vasodilator effect of cap-topril in rabbit. Hypertension 17:504–509.PubMedCrossRefGoogle Scholar
  28. Hoffend J, Cavarape A, Endlich K, & Steinhausen M. 1993. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation. Am J Physiol (Renal Fluid Electrolyte Physiol 34) 265:F285–F292.Google Scholar
  29. Ichihara A, Inscho EW, Imig JD, & Navar LG. 1998. Neuronal nitric oxide synthase modulates rat renal microvascular function. Am J Physiol (Renal Physiol 43) 274: F516–24.Google Scholar
  30. Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, & Gruetter CA. 1981. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218:139–749.Google Scholar
  31. Imig JD, & Roman RJ. 1992. Nitric oxide modulates vascular tone in preglomerular arte-rioles. Hypertension 19:770–774.PubMedCrossRefGoogle Scholar
  32. Imig JD, Gebremedhin D, Harder DR, & Roman RJ. 1993. Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF. Am J Physiol (Heart Circ Physiol 33) 264:H190–H195.Google Scholar
  33. Ito S, & Ren Y. 1993. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J Clin Invest 92:1093–1098.PubMedCrossRefGoogle Scholar
  34. Ito S, Johnson CS, & Carretero OA. 1991. Modulation of angiotensin II-induced vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 87:1656–1663.PubMedCrossRefGoogle Scholar
  35. Ito S, Arima S, Ren YL, Juncos LA, & Carretero OA. 1993. Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 91:2012–2019.PubMedCrossRefGoogle Scholar
  36. King AJ, & Brenner BM. 1991. Endothelium-derived vasoactive factors and the renal vas-culature. Am J Physiol 260:R653–R662.PubMedGoogle Scholar
  37. Kiyomoto H, Matsuo H, Tamaki T, Aki Y, Hong H, Iwao H, & Abe Y, 1992. Effect of L-N G-nitro-arginine, inhibitor of nitric oxide synthesis, on autoregulation of renal blood flow in dogs. Jpn J Pharmacol 58:147–155.PubMedCrossRefGoogle Scholar
  38. Kone BC, & Baylis C. 1997. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 41) 272:F561–F578.Google Scholar
  39. Kumagai K, Suzuki H, Ichikawa M, Jimbo M, Murakami M, Ryuzaki M, & Saruta T. 1994. Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system. Hypertension 24:220–226.PubMedCrossRefGoogle Scholar
  40. Lahera V, Salom MG, Fiksen-Olsen MJ, Raij L, & Romero JC. 1990. Effects of N G-monomethyl-l-arginine and l-arginine on acetylcholine renal response. Hypertension 15:659–663.PubMedCrossRefGoogle Scholar
  41. Lahera V, Salom MG, Fiksen-Olsen MJ, & Romero JC. 1991. Mediatory role of endothelium-derived nitric oxide in renal vasodilatory and excretory effects of bradykinin. Am J Hypertens 4:260–262.PubMedGoogle Scholar
  42. Lamas S, Marsden PA, Li GK, Tempst P, & Michel T. 1992. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89:6348–6352.PubMedCrossRefGoogle Scholar
  43. Lockhart JC, Larson TS, & Knox FG. 1994. Perfusion pressure and volume status determine the microvascular response of the rat kidney to N G-monomethyl-L-arginine. Circ Res 75:829–835.PubMedCrossRefGoogle Scholar
  44. Majid DSA, & Navar LG. 1992. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 262:F40–F46.Google Scholar
  45. Majid DSA, & Navar LG. 1994. Blockade of distal nephron sodium transport attenuates pressure natriuresis in dogs. Hypertension 23:1040–1045.PubMedCrossRefGoogle Scholar
  46. Majid DSA, & Navar LG. 1996. Medullary blood flow responses to changes in arterial pressure in canine kidney. Am J Physiol (Renal Fluid Electrolyte Physiol 39) 270: F833–F838.Google Scholar
  47. Majid DSA, & Navar LG. 1997. Nitric oxide in the mediation of pressure natriuresis. Clin Exp Pharmacol Physiol 24:595–599.PubMedCrossRefGoogle Scholar
  48. Majid DSA, Williams A, Kadowitz PJ, & Navar LG. 1993a. Renal responses to intra-arterial administration of nitric oxide donor in dogs. Hypertension 22:535–541.PubMedCrossRefGoogle Scholar
  49. Majid DSA, Williams A, & Navar LG. 1993b. Inhibition of nitric oxide synthesis attenuates pressure-induced natriuretic responses in anesthetized dogs. Am J Physiol (Renal Fluid Electrolyte Physiol 33) 264:F79–F87.Google Scholar
  50. Majid DSA, Godfrey M, Grisham MB, & Navar LG. 1995. Relation between pressure natriuresis and urinary excretion of nitrate/nitrite in anesthetized dogs. Hypertension 25 (Part 2:860–865.Google Scholar
  51. Majid DSA, Omoro SA, & Godfrey M, et al. 1996. Assessment of differential intrarenal blood flow responses using single fiber laser-Doppler flowmetry. [Abstract] J Am Soc Nephrol 7:1584.Google Scholar
  52. Majid DSA, Godfrey M, & Navar, LG. 1997a. Pressure natriuresis and renal medullary blood flow in dogs. Hypertension 29:1051–1057.PubMedCrossRefGoogle Scholar
  53. Majid DSA, Godfrey M, & Omoro, SA. 1997b. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney. Hypertension 29 (Part 2):210–215.Google Scholar
  54. Manning RD Jr, Hu L, Mizelle HL, & Granger JP. 1993a. Role of nitric oxide in long-term angiotensin II-induced renal vasoconstriction. Hypertension 21:949–955.PubMedCrossRefGoogle Scholar
  55. Manning RD Jr, Hu L, Mizelle HL, Montani J-P, & Norton MW. 1993b. Cardiovascular responses to long-term blockade of nitric oxide synthesis. Hypertension 22:40–48.PubMedCrossRefGoogle Scholar
  56. Marshall JJ, & Kontos HA. 1990. Endothelium-derived relaxing factors—a perspective from in vivo data. Hypertension 16:371–386.PubMedCrossRefGoogle Scholar
  57. Mattson DL, Roman RJ, & Cowley AW Jr. 1992. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 19:766–769.PubMedCrossRefGoogle Scholar
  58. Mattson DL, Lu S, & Cowley AW Jr. 1997. Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharmacol Physiol 24: 587–590.PubMedCrossRefGoogle Scholar
  59. Mattson DL, Lu S, Roman RJ, & Cowley AW Jr. 1993. Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol (Regul In-tegrative Comp Physiol 33) 264:R578–R583.Google Scholar
  60. Moncada S, Palmer RMJ, & Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142.PubMedGoogle Scholar
  61. Navar LG, Inscho EW, Majid DSA, Imig JD, Harrison-Bernard LM, & Mitchell KD. 1996. Paracrine regulation of the renal microcirculation. Physiol Rev 76:425–536.PubMedGoogle Scholar
  62. Ohishi K, Carmines PK, Inscho EW, & Navar LG. 1992. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles. Am J Physiol (Renal Fluid Electrolyte Physiol 32) 263.F900–F906.Google Scholar
  63. Perrella MA, Hildebrand FL Jr, Margulies KB, & Burnett JC Jr. 1991. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function. Am J Physiol (Regul Integrative Comp Physiol 30) 261:R323–R328.Google Scholar
  64. Pucci ML, Lin L, & Nasjletti A. 1992. Pressor and renal vasoconstrictor effects of N G-nitro-L-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin, prostanoids and vasopressin. J Pharmacol Exp Ther 261:240–245.PubMedGoogle Scholar
  65. Qiu C, Engels K, & Baylis C. 1994. Angiotensin II and ₱-adrenergic tone in chronic nitric oxide blockade-induced hypertension. Am J Physiol (Renal Fluid Electrolyte Physiol 35):266:R1470–R1476.Google Scholar
  66. Roman RJ, Cowley AW Jr, Garcia-Estan J, & Lombard JH. 1988. Pressure-diuresis in volume-expanded rats: cortical and medullary hemodynamics. Hypertension 12: 168–176.PubMedCrossRefGoogle Scholar
  67. Salazar FJ, Pinilla JM, Lopez F, Romero JC, & Quesada T. 1992. Renal effects of prolonged synthesis inhibition of endothelium-derived nitric oxide. Hypertension 20:113–117.PubMedCrossRefGoogle Scholar
  68. Salom MG, Lahera V, Miranda-Guardiola F, & Romero JC. 1992. Blockade of pressure na-triuresis induced by inhibition of renal synthesis of nitric oxide in dogs. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 262:F718–F722.Google Scholar
  69. Shultz PJ, Archer SL, & Rosenberg ME. 1994. Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells. Kidney Int 46:683–689.PubMedCrossRefGoogle Scholar
  70. Sigmon DH, & Beierwaltes WH. 1993. Angiotensin II: nitric oxide interaction and the distribution of blood flow. Am J Physiol (Regul Integrative Comp Physiol 34) 265:R1276–R1283.Google Scholar
  71. Sigmon DH, Carretero OA, & Beierwaltes WH. 1992a. Angiotensin dependence of endothelium-mediated renal hemodynamics. Hypertension 20:643–650.PubMedCrossRefGoogle Scholar
  72. Sigmon DH, Carretero OA, & Beierwaltes WH. 1992b. Plasma renin activity and the renal response to nitric oxide synthesis inhibition. J Am Soc Nephrol 3:1288–1294.PubMedGoogle Scholar
  73. Sigmon DH, Carretero OA, & Beierwaltes WH. 1993. Renal versus femoral hemodynamic response to endothelium-derived relaxing factor synthesis inhibition. J Vasc Res 30:218–223.PubMedCrossRefGoogle Scholar
  74. Sonntag M, Deussen A, & Schrader J. 1992. Role of nitric oxide in local blood flow control in the anaesthetized dog. P flügers Arch 420:194–199.CrossRefGoogle Scholar
  75. Star RA. 1997. Intrarenal localization of nitric oxide synthase isoforms and soluble guany-lyl cyclase. Clin Exp Pharmacol Physiol 24:607–610.PubMedCrossRefGoogle Scholar
  76. Takenaka T, Mitchell KD, & Navar LG. 1993. Contribution of angiotensin II to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat. J Am Soc Nephrol 4:1046–1053.PubMedGoogle Scholar
  77. Thorup C, & Persson AEG. 1994. Inhibition of locally produced nitric oxide resets tubu-loglomerular feedback mechanism. Am J Physiol (Renal Fluid Electrolyte Physiol 36) 267:F606–F611.Google Scholar
  78. Ujiie K, Drewett JG, Yuen PST, & Star RA. 1993. Differential expression of mRNA for guanylyl cyclase-linked endothelium-derived relaxing factor receptor subunits in rat kidney. J Clin Invest 91:730–734.PubMedCrossRefGoogle Scholar
  79. Vallon V, & Thomson S. 1995. Inhibition of local nitric oxide synthase increases homeo-static efficiency of tubuloglomerular feedback. Am J Physiol (Renal Fluid Electrolyte Physiol 38) 269:F892–F899.Google Scholar
  80. Wilcox CS, & Welcb WJ. 1996. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension. Kidney Int 49 (suppl 55):S-9-S-13.Google Scholar
  81. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, & Schmidt HHHW. 1992. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 89:11993–11997.PubMedCrossRefGoogle Scholar
  82. Xie Q-W, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, & Nathan C, 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228.PubMedCrossRefGoogle Scholar
  83. Yukimura T, Yamashita Y, Miura K, Okumura M, Yamanaka S, & Yamamoto K. 1992. Renal effects of the nitric oxide synthase inhibitor, L-N G-nitroarginine, in dogs. Am J Hy-pertens 5:484–487.Google Scholar
  84. Zatz R, & De Nucci G. 1991. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol (Renal Fluid Electrolyte Physiol 30) 261:F360–F363.Google Scholar
  85. Zou A-P, & Cowley AW Jr. 1997. Nitric oxide in renal cortex and medulla. An in vivo mi-crodialysis study. Hypertension 29 (part 2): 194–198.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Dewan S. A. Majid
  • L. Gabriel Navar

There are no affiliations available

Personalised recommendations