Cohomology of Congruence Subgroups of SU (2, 1)p and Hodge Cycles on Some Special Complex Hyperbolic Surfaces

  • Don Blasius
  • Jonathan Rogawski
Part of the Progress in Mathematics book series (PM, volume 171)

Abstract

Let G be a semisimple algebraic group over a number field F and set G = ∏ vS Gv, where S is the set of archimedean places of F. As is well-known, the cohomology of a cocompact lattice Γ ⊂ G is expressed in terms of the decomposition
$${L^2}\left( {\Gamma \backslash {G_\infty }} \right) \simeq \hat \oplus m(\pi ,\Gamma )\pi $$

Keywords

Tate Zink Wallach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BFG]
    D. Blasius, J. Franke, F. Grunewald, Cohomology of S-arithmetic subgroups in the number field case, Inventiones Math., 116, 1–3 (1994), 75–94.MathSciNetCrossRefMATHGoogle Scholar
  2. [BR1]
    D. Blasius, J. Rogawski, Tate classes and arithmetic quotients of the twoball. In [Mo].Google Scholar
  3. [BR2]
    D. Blasius, J. Rogawski, Zeta functions of Shimura varieties. In: Motives (U. Jannsen, S. Kleiman, J.-P. Serre, eds.), Proc. Symp. Pure Math. 55, Part 2. AMS, 1994.Google Scholar
  4. [Bo]
    A. Borel, Cohomologie de sous-groupes discrets et représentations de groupes semi-simple, Astérisque, 32–34 (1976), 72–112.Google Scholar
  5. [BW]
    A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Studies 94 (1980).MATHGoogle Scholar
  6. [Cl]
    L. Clozel, Sur une question d’Armand Borel, C.R. Acad. Sci. Paris, 324 (1997), 973–976.MathSciNetCrossRefMATHGoogle Scholar
  7. [C2]
    L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J., 72 (1993), 757–795.MathSciNetCrossRefMATHGoogle Scholar
  8. [GRS1]
    S. Gelbart, J. Rogawski, D. Soudry, On periods of cusp forms and algebraic cycles for U(3), Israel J. Math., 83 (1993), 213–252.MathSciNetCrossRefMATHGoogle Scholar
  9. [GRS2]
    S. Gelbart, J. Rogawski, D. Soudry, Endoscopy, theta-liftings, and period integrals for the unitary group in three variables, Annals of Math., 145 (1997), 419–476.MathSciNetCrossRefMATHGoogle Scholar
  10. [HLR]
    G. Harder, R. Langlands, and M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal Flächen, J. Reine. Angew. Math., 366 (1986), 53–120.MathSciNetMATHGoogle Scholar
  11. [K]
    R. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties, Inventiones Math., 108 (1992), 653–665.MathSciNetCrossRefMATHGoogle Scholar
  12. [Ka]
    D. Kazhdan, Some applications of the Weil representation, J. Anal. Math., 32 (1977), 235–248.MathSciNetCrossRefMATHGoogle Scholar
  13. [Kn]
    A. Knapp, Lie Groups: Beyond an Introduction,Birkhäuser, Boston, Basel, Berlin, 1996.MATHGoogle Scholar
  14. [Mo]
    The zeta-functions of Picard modular surfaces (R. Langlands and D. Ramakrishnan, eds.). CRM Pubs., Montreal, 1992.Google Scholar
  15. [RZ]
    M. Rapoport and T. Zink, Über die lokale Zetafunktion von Shimurava-rietäten, Inventiones Math., 68 (1982), 21–101.MathSciNetCrossRefMATHGoogle Scholar
  16. [R1]
    J. Rogawski, Automorphic representations of the unitary group in three variables, Ann. of Math. Studies, 123 (1990).Google Scholar
  17. [R2]
    J. Rogawski, Analytic expression for the number of points mod p. In [Mo].Google Scholar
  18. [S]
    G. Shimura, Automorphic forms and the periods of abelian varieties, J.Math. Soc. Japan, 31 (1979), 561–592.MathSciNetCrossRefMATHGoogle Scholar
  19. [VZ]
    D. Vogan and G. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math 53 (1984), 51–90.MathSciNetMATHGoogle Scholar
  20. [Z]
    G. Zuckerman, Continuous cohomology and unitary representations of real reductive groups, Annals of Math. 107(2) (1978), 495–516.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Don Blasius
    • 1
  • Jonathan Rogawski
    • 1
  1. 1.Department of MathematicsUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations