Cellular Pharmacology at Synapses Within the Septal Complex

  • Joel P. Gallagher
  • Patricia Shinnick-Gallagher
  • William H. Griffith


The septum is a complex structure located centrally and integrally within the more global neuronal network identified as the limbic system. This circuit, originally described by Papez (1937), is involved in multiple brain functions, as will be indicated in later chapters of this book. In the first two chapters you were alerted to an anatomical organization concerning concerning the connectivity of septal neurons. Connections of the septum were also described earlier (Raismann 1966), and work in this area has also been reviewed (Jakab and Leranth 1995).


Basal Forebrain Medial Septum Muscarinic Agonist Lateral Septum Septal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alheid, G.F., and Heimer, L. 1996. Theories of basal forebrain organization and the “emotional motor system.” Eds. G. Holstege, R. Bandler, and C.B. Saper. Prog. Brain Res. 107:461–484.Google Scholar
  2. Allen, T.G.J., and Brown, D.A. 1993. M2 muscarinic receptor-mediated inhibition of the Ca2+ current in rat magnocellular cholinergic basal forebrain neurons. J. Physiol. (Lond.). 466: 173–189.Google Scholar
  3. Alonso, A., Khateb, A., Fort, P., Jones, B.E., and Mühlethaler, M. 1996. Differential oscillatory properties of cholinergic and noncholinergic nucleus basalis neurons in guinea pig brain slice. Eur. J. Neurosci. 8(1):169–182.CrossRefPubMedGoogle Scholar
  4. Alreja, M. 1996. Excitatory actions of serotonin on GABAergic neurons of the medial septum and diagonal band of Broca. Synapse. 22(l):15–27.CrossRefPubMedGoogle Scholar
  5. Alreja, M., and Liu, W. 1996. Noradrenaline induces IPSCs in rat medial septalJ diagonal band neurons: involvement of septohippocampal GABAergic neurons. J. Physiol (Lond.). 494:201–215.Google Scholar
  6. Alvarez De Toledo, G., and Lopez-Barneo, J. 1988. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro. J. Physiol (Lond.). 396:399–415.Google Scholar
  7. Bliss, T.VP., and Collingridge, G.L. 1993. A synaptic model of memory: long-term potentiation in hippocampus. Nature. 361:31–39.CrossRefPubMedGoogle Scholar
  8. Bliss, T.V.P., and L0mo, R. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of anesthetized rabbits following stimulation of the perforant path. J. Physiol. (Lond.). 232:331–356.Google Scholar
  9. Bowery, N.G 1997. Pharmacology of Mammalian GABAB Receptors. In The GABA Receptors. Second Edition., eds. SJ. Enna, and N.G. Bowery, pp. 210–212. Totowa, NJ: Humana Press.Google Scholar
  10. Brazhnik, E.S., and Fox, S.E. 1997. Intracellular recordings from medial septal neurons during hippocampal theta rhythm. Exp. Brain Res. 114:442–453.CrossRefPubMedGoogle Scholar
  11. Calaresu, F.R., and Mogenson, G.L. 1972. Cardiovascular responses to electrical stimulation of the septum in the rat. Am. J. Physiol. 223(suppl 4):777–782.PubMedGoogle Scholar
  12. Carbone, E., and Lux, H.D. 1984. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 310:501–502.CrossRefPubMedGoogle Scholar
  13. Carette, B. 1994. Calcium-activated hyperpolarizations in neurons of the medio-lateral part of the lateral septum: intracellular studies from guinea pig brain slices. Exp. Brain Res. 102:297–302.CrossRefPubMedGoogle Scholar
  14. Carette, B., Poulain, P., and Doutreland, 0. 1992. Electrical properties of neurons in the mediolateral part of the lateral septum: intracellular recordings from guineapig brain slices. Exp. Brain Res. 91:105–114.CrossRefPubMedGoogle Scholar
  15. DeFrance, J.F. 1976. The Septal Nuclei. New York: Plenum Press.Google Scholar
  16. Descarries, L., Gisiger, V., and Steriade, M. 1997. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol. 53:603–625.CrossRefPubMedGoogle Scholar
  17. Doutreland, O., Poulain, P., Carette, B., and Beauvillain, J.C. 1994. Light-and electron-microscopic study of electrophysiologically characterized neurons in the mediolateral part of the lateral septum of the guinea-pig. Cell Tissue Res. 275:543–553.CrossRefGoogle Scholar
  18. Dutar, P., Bassant, M.-H., Senut, M.-G, and Lamour, Y. 1995. The septohippocampal pathway: structure and function of a central cholinergic system. Physiol. Rev. 75:393–427.PubMedGoogle Scholar
  19. Dutar, P., Lamour, Y., and Jobert, A. 1985. Septohippocampal neurons in the rat. An in vivo. intracellular study. Brain Res. 340:135–142.CrossRefPubMedGoogle Scholar
  20. Dutar, P., Lamour, Y, Rascal, O., and Jobert, A. 1986. Septo-hippocampal neurons in the rat. Further study of their physiological and pharmacological studies. Brain Res. 365:325–334.CrossRefPubMedGoogle Scholar
  21. Fisahn, A., Pike, F.G., Buhl, E.H., and Paulsen, O. 1998. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature. 94: 186–189.CrossRefGoogle Scholar
  22. Fisher, R., and Johnston, D. 1990. Differential modulation of single voltage-gated calcium channels by cholinergic and adrenergic agonists in adult hippocampal neurons. J. Neurophysiol. 64:1291–1302.PubMedGoogle Scholar
  23. Fort, P., Khateb, A., Pegna, A., Mühlethaler, M., and Jones, B.E. 1995. Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro. pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur. J. Neurosci. 7(7):1502–1511.CrossRefPubMedGoogle Scholar
  24. Fort, P., Khateb, A., Serafin, M., Mühlethaler, M., and Jones, B.E. 1998. Pharmacological characterization and differentiation of non-cholinergic nucleus basalis neurons in vitro. Neuroreport. 9(1): 61–65CrossRefPubMedGoogle Scholar
  25. Fraser, D.D., and MacVicar, B.A. 1991. Low-threshold transient calcium current in rat hippocampal lacunosum-moleculare interneurons: kinetics and modulation by neurotransmitters. J. Neurosci. 11:2812–2820.PubMedGoogle Scholar
  26. Freund, T.F., and Antal, M. 1988. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170–173.CrossRefPubMedGoogle Scholar
  27. Frotscher, M., and Leranth, C. 1985. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comp. Neurol. 239:237–246.CrossRefPubMedGoogle Scholar
  28. Gallagher, J.P., and Hasuo, H. 1989. Excitatory amino acid-receptor-mediated EPSPs in rat dorsolateral septal nucleus neurones in vitro. J. Physiol. (Lond.). 418: 353–365.Google Scholar
  29. Gallagher, J.P., Zheng, F, Hasuo, H., and Shinnick-Gallagher, P. 1995. Activities of neurons within the rat dorsolateral septal nucleus (DLSN). Prog. Neurobiol. 45:373–395.CrossRefPubMedGoogle Scholar
  30. Griffith, W.H. 1988. Membrane properties of cell types within guinea-pig basal fore-brain nuclei in vitro. J. Neurophysiol. 59:1590–1612.PubMedGoogle Scholar
  31. Griffith, W.H., and Matthews, R.T. 1986. Electrophysiology of AChE-positive neurons in basal forebrain neurons in vitro. In The Basal Forebrain: Anatomy to Function., eds. T.C. Napier, P. Kalivas, and I. Hanin, pp. 148–156. New York: Plenum.Google Scholar
  32. Griffith, W.H., Taylor, L., and Davis, MJ. 1994. Whole-cell and single-channel calcium currents in guinea pig basal forebrain neurons. J. Neuwphysiol. 71:-2359–2376.Google Scholar
  33. Gulyás, A.I., Seress, L., Toth, K., Acsády, L., Antal, M., and Fruend, T.F. 1991. Septal GABAergic neurons innervate inhibitory interneurons in the hippocampus of the Macaque monkey. Neuroscience. 41:381–390.CrossRefPubMedGoogle Scholar
  34. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.CrossRefPubMedGoogle Scholar
  35. Hasuo, H., and Gallagher, J.P. 1990. Facilitatory action of muscarine on the slow afterdepolarization of rat dorsolateral septal nucleus neurons. Neurosci. Lett. 112:234–238.CrossRefPubMedGoogle Scholar
  36. Hasuo, H., Akasu, T., and Gallagher, J.P. 1995. Muscarine increases a voltage-independent potassium conductance through an M4 receptor in rat dorsolateral septal nucleus neurons. Neurosci. Lett. 189:163–166.CrossRefPubMedGoogle Scholar
  37. Hasuo, H., Akasu, T., and Gallagher, J.P. 1996. Muscarine activates a nonselective cation current through an M3 muscarinic receptor type in rat dorsolateral septal nucleus neurons. J. Neuwphysiol. 76:2221–2230.Google Scholar
  38. Hasuo, H., Gallagher, J.P., and Shinnick-Gallagher, P. 1988. Disinhibition in the rat septum is mediated by M1 muscarinic receptors. Brain Res. 438:323–327.CrossRefPubMedGoogle Scholar
  39. Hill, D.R., and Bowery, N.G. 1981.3H-Baclofen and 3H-GABA bind to bicuculline insensitive GABAB sites in rat brain. Nature. 290:149–152.CrossRefPubMedGoogle Scholar
  40. Huguenard, J.R. 1996. Low-threshold calcium currents in central nervous system neurons. Ann. Rev. Physiol. 58:329–348.CrossRefGoogle Scholar
  41. Jakab, R.L., and Leranth, C. 1995. Septum. In The Rat Nervous System, Second Edition., ed. G. Paxinos, pp. 405–442. San Diego: Academic Press Inc.Google Scholar
  42. Joëls, M., and Urban, U.A. 1984. Electrophysiological and pharmacological evidence in favor of amino acid neurotransmission in fimbria-fornix fibers innervating the lateral septal complex of rats. Exp. Brain Res. 54:455–462.CrossRefPubMedGoogle Scholar
  43. Joels, M, Van Veldhuizen, M., Urban, U.A., and De Kloet, E.R. 1987. N-Acetyl-aspartylglutamate: binding sites and excitatory action in the dorsolateral septum of rats. Brain Res. 403:192–197.CrossRefPubMedGoogle Scholar
  44. Jones, B.E., and Cuello, A.C. 1989. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons. Neuroscience. 31:37–61.CrossRefPubMedGoogle Scholar
  45. Khateb, A., Fort, P., Alonso, A., Jones, B.E., and Mühlethaler, M. 1993. Pharmacological and immunohistological evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur. J. Neurosci. 5(5):541–547.CrossRefPubMedGoogle Scholar
  46. Khateb, A., Fort, P., Pegna, A., Jones, B.E., and Mühlethaler, M. 1995b. Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience. 69(2):495–506.CrossRefPubMedGoogle Scholar
  47. Khateb, A., Fort, P., Serafin, M., Jones, B.E., and Mühlethaler, M. 1995a. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro. J. Physiol. (Lond.). 487:623–638.Google Scholar
  48. Khateb, A., Fort, P., Williams, M., Serafin, M., Jones, B. E., and Mühlethaler, M. 1997. Modulation of cholinergic nucleus basalis neurons by acetylcholine and N-methyl-D-aspartate. Neuroscience. 81:47–55.CrossRefPubMedGoogle Scholar
  49. Khateb, A., Fort, P., Williams, S., Serafin, M., Mühlethaler, M., and Jones, B.E. 1998. GABAergic input to cholinergic nucleus basalis neurons. Neuroscience. 86(3): 937–947.CrossRefPubMedGoogle Scholar
  50. King, C., Recce, M., and O’Keefe, J. 1998. The rhythmicity of cells of the medial septumJdiagonal band of Broca in the awake freely moving rat: relationships with behavior and hippocampal theta. Eur. J. Neurosci. 10:464–477.CrossRefPubMedGoogle Scholar
  51. Lamour, Y., Dutar, P., and Jobert, A. 1984. Septo-hippocampal and other medial septum-diagonal band neurons: Electrophysiological and pharmacological properties. Brain Res. 309:227–239.CrossRefPubMedGoogle Scholar
  52. Lee, M.G., Chrobak, J. J., Sik, A., Wiley, R.G, and Buzsáki, G 1994. Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience. 62: 1033–1047.CrossRefPubMedGoogle Scholar
  53. Leranth, C, Delier, T., and Buzsáki, G. 1992. Intraseptal connections redefined: lack of lateral septum to medial septum path. Brain Res. 583:1–11.CrossRefPubMedGoogle Scholar
  54. Liu, W, and Alreja, M. 1997. Atypical antipsychotics block the excitatory effects of serotonin in septohippocampal neurons in the rat. Neuroscience. 79(2):369–392.CrossRefPubMedGoogle Scholar
  55. Llinás, R.R. 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 242:1654–1664.CrossRefPubMedGoogle Scholar
  56. Markram, H., and Segal, M. 1990. Electrophysiological characteristics of cholinergic and noncholinergic neurons in rat medial septum-diagonal band complex. Brain Res. 513:171–174.CrossRefPubMedGoogle Scholar
  57. McLennan, H., and Miller, JJ. 1974a. The hippocampal control of neuronal discharges in the septum of the rat. J. Physiol. (Lond.). 237:604–624.Google Scholar
  58. McLennan, H., and Miller, JJ. 1974b. Gamma-aminobutyric acid and inhibition in the septal nuclei of the rat. J. Physiol. (Lond.). 237:625–634.Google Scholar
  59. Morris, R.G.M., Anderson, E., Lynch, G.S., and Baudry, M. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 319:774–776.CrossRefPubMedGoogle Scholar
  60. Onteniente, B., Geffard, M., Campistron, G, and Calas, A. 1987. An ultrastructural study of GABA-immunoreactive neurons in the septum of the rat. J. Neurosci. 7:48–54.PubMedGoogle Scholar
  61. Onteniente, B., Tago, H., Kimura, H., and Maeda, T. 1986. Distribution of yaminobutyric acid-immunoreactive neurons in the septal region of the rat brain. J. Comp. Neurol. 222:69–80.Google Scholar
  62. Papez, J.W. 1937. Proposed mechanism of emotion. Arch. Neurol. Psychiatry. 38: 725–743.CrossRefGoogle Scholar
  63. Phelan, K.D., Hasuo, H., Twery, M., and Gallagher, J.P. 1989. Projection neurons in the rat dorsolateral septal nucleus possess axon collaterals. Neurosci. Lett. 97: 259–265.CrossRefPubMedGoogle Scholar
  64. Raisman, G 1966. The connexions of the septum. Brain. 89:317–348.CrossRefPubMedGoogle Scholar
  65. Rye, D.B., Spacer, C.B., Lee, H.L., and Wainer, B.H. 1987. Pedunculopontine tegmental nucleus in the rat: cytoarchitecture, cytochemistry and some extrapyramidal connections of the mesopontine tegmentum. J. Comp. Neurol. 259:483–528.CrossRefPubMedGoogle Scholar
  66. Schneggenburger, P., Lopez-Barneo, J., and Konnerth, A. 1992. Excitatory and inhibitory synaptic currents and receptors in rat medial septal neurones. J. Physiol. (Lond.). 445:261–276.Google Scholar
  67. Serafin, M., Williams, S., Khateb, A., Fort, P., and Muhlethaler, M. 1996. Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience. 75(3):671–675.CrossRefGoogle Scholar
  68. Shoji, S., Simms, D., McDaniel, W.C., and Gallagher, J.P. 1997. Chronic cocaine enhances γ-aminobutyric acid and glutamate release by altering presynaptic and not postsynaptic γ-aminobutyric acidB receptors within the rat dorsolateral septal nucleus. J. Pharmacol. Exp. Therap. 280:129–137.Google Scholar
  69. Shoji, S., Simms, D., Yamada, K., and Gallagher, IP. 1998. Cocaine administered in vitro. to brain slices from rats treated with cocaine chronically in vivo. results in an γ-aminobutyric acid receptor-mediated hyperpolarization recorded from the dorsolateral septum. J. Pharmacol. Exp. Therap. 286:509–518.Google Scholar
  70. Sim, J.A., and Griffith, W.H. 1991. Muscarinic agonists block a late-afterhyperpo-larization in medial septumJdiagonal band neurons in vitro. Neurosci. Lett. 129: 63–68CrossRefPubMedGoogle Scholar
  71. Sim, J.A., and Griffith, W.H. 1996. Muscarinic inhibition of glutamatergic transmission onto rat magnocellular basal forebrain neurons in a thin-slice preparation. Eur. J. Neurosci. 8:880–891.CrossRefPubMedGoogle Scholar
  72. Smythe, J.W., Colom, L.V., and Bland, B.H. 1992. The extrinsic modulation of hip-pocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. Neurosci. Biobehav. Rev. 16:289–308.CrossRefPubMedGoogle Scholar
  73. Staiger, J.F., and Nürnberger, F. 1991. The efferent connections of the lateral septal nucleus in the guinea pig: intrinsic connectivity of the septum and projections to other telencephalic areas. Cell Tissue Res. 264:415–426.CrossRefPubMedGoogle Scholar
  74. Stevens, D.R., and Cotman, C.W. 1991. Long-term potentiation of excitatory and slow synaptic potentials in the hippocampal-septal projections of the rat. Brain Res. 558:120–122.CrossRefPubMedGoogle Scholar
  75. Stevens, D.R., Gallagher, J.P., and Shinnick-Gallagher, P. 1984. Intracellular recordings from rat dorsolateral septal neurons, in vitro. Brain Res. 305:353–365.CrossRefGoogle Scholar
  76. Stevens, D.R., Gallagher, J.P., and Shinnick-Gallagher, P. 1985. Further studies on the action of baclofen on neurons of the dorsolateral septal nucleus of the rat, in vitro. Brain Res. 358:360–365.CrossRefGoogle Scholar
  77. Stevens, D.R., Gallagher, J.P., and Shinnick-Gallagher, P. 1987. In vitro. studies of the role of gamma-aminobutyric acid in inhibition in the lateral septum of the rat. Synapse. 1:184–190.CrossRefPubMedGoogle Scholar
  78. Stewart, M., and Fox, S.E. 1990. Do septal neurons pace the hippocampal theta rhythm? TINS. 13:163–168.PubMedGoogle Scholar
  79. Storm-Mathisen, I, and Woxen-Opsahle, M. 1978. Aspartate andJor glutamate may be transmitters in hippocampal efferents to septum and hypothalamus. Neurosci. Lett. 9:65–70.CrossRefPubMedGoogle Scholar
  80. Toth, K., Freund, T.F., and Miles, R. 1997. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol. (Lond.). 500:463–474.Google Scholar
  81. Vanderwolf, C.H. 1975. Neocortical and hippocampal activation in relation to behavior: effects of atropine, eserine, phenothiazines and amphetamine. J. Comp. Physiol. Psychol. 88:300–323.CrossRefPubMedGoogle Scholar
  82. Vinogradova, O.S. 1995. Expression, control and probable functional significance of the neuronal theta-rhythm. Prog. Neurobiol. 45:523–583.CrossRefPubMedGoogle Scholar
  83. Witter, M.P., Daelmans, H.E.M., Jorritsma-Byham, B., Staiger, J.F., and Wouterlood, E.G. 1992. Restricted origin and distribution of projections from the lateral to medial septal complex in rat and guinea pig. Neurosci. Lett. 148:164–168.CrossRefPubMedGoogle Scholar
  84. Woolf, N. J. 1991. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol. 37:475–524.CrossRefPubMedGoogle Scholar
  85. Yadin, E., Thomas, E., Grishkat, H.L., and Strickland, C.E. 1993. The role of the lateral septum in anxiolysis. Physiol Behav. 53:1077–1083.CrossRefPubMedGoogle Scholar
  86. Zheng, F., and Gallagher, J.P. 1992. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron. 9:163–172.CrossRefPubMedGoogle Scholar
  87. Zaborszky, L. 1992. Synaptic organization of basal forebrain cholinergic projection neurons. In Neurotransmitter Interactions and Cognitive Functions., eds. E.D. Levin, M. Decker, and L. Butcher, pp. 27–65. Boston: Birkhauser.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Joel P. Gallagher
  • Patricia Shinnick-Gallagher
  • William H. Griffith

There are no affiliations available

Personalised recommendations