Skip to main content

Cellular Pharmacology at Synapses Within the Septal Complex

  • Chapter
The Behavioral Neuroscience of the Septal Region

Abstract

The septum is a complex structure located centrally and integrally within the more global neuronal network identified as the limbic system. This circuit, originally described by Papez (1937), is involved in multiple brain functions, as will be indicated in later chapters of this book. In the first two chapters you were alerted to an anatomical organization concerning concerning the connectivity of septal neurons. Connections of the septum were also described earlier (Raismann 1966), and work in this area has also been reviewed (Jakab and Leranth 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheid, G.F., and Heimer, L. 1996. Theories of basal forebrain organization and the “emotional motor system.” Eds. G. Holstege, R. Bandler, and C.B. Saper. Prog. Brain Res. 107:461–484.

    Google Scholar 

  • Allen, T.G.J., and Brown, D.A. 1993. M2 muscarinic receptor-mediated inhibition of the Ca2+ current in rat magnocellular cholinergic basal forebrain neurons. J. Physiol. (Lond.). 466: 173–189.

    CAS  Google Scholar 

  • Alonso, A., Khateb, A., Fort, P., Jones, B.E., and Mühlethaler, M. 1996. Differential oscillatory properties of cholinergic and noncholinergic nucleus basalis neurons in guinea pig brain slice. Eur. J. Neurosci. 8(1):169–182.

    Article  CAS  PubMed  Google Scholar 

  • Alreja, M. 1996. Excitatory actions of serotonin on GABAergic neurons of the medial septum and diagonal band of Broca. Synapse. 22(l):15–27.

    Article  CAS  PubMed  Google Scholar 

  • Alreja, M., and Liu, W. 1996. Noradrenaline induces IPSCs in rat medial septalJ diagonal band neurons: involvement of septohippocampal GABAergic neurons. J. Physiol (Lond.). 494:201–215.

    CAS  Google Scholar 

  • Alvarez De Toledo, G., and Lopez-Barneo, J. 1988. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro. J. Physiol (Lond.). 396:399–415.

    Google Scholar 

  • Bliss, T.VP., and Collingridge, G.L. 1993. A synaptic model of memory: long-term potentiation in hippocampus. Nature. 361:31–39.

    Article  CAS  PubMed  Google Scholar 

  • Bliss, T.V.P., and L0mo, R. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of anesthetized rabbits following stimulation of the perforant path. J. Physiol. (Lond.). 232:331–356.

    CAS  Google Scholar 

  • Bowery, N.G 1997. Pharmacology of Mammalian GABAB Receptors. In The GABA Receptors. Second Edition., eds. SJ. Enna, and N.G. Bowery, pp. 210–212. Totowa, NJ: Humana Press.

    Google Scholar 

  • Brazhnik, E.S., and Fox, S.E. 1997. Intracellular recordings from medial septal neurons during hippocampal theta rhythm. Exp. Brain Res. 114:442–453.

    Article  CAS  PubMed  Google Scholar 

  • Calaresu, F.R., and Mogenson, G.L. 1972. Cardiovascular responses to electrical stimulation of the septum in the rat. Am. J. Physiol. 223(suppl 4):777–782.

    CAS  PubMed  Google Scholar 

  • Carbone, E., and Lux, H.D. 1984. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 310:501–502.

    Article  CAS  PubMed  Google Scholar 

  • Carette, B. 1994. Calcium-activated hyperpolarizations in neurons of the medio-lateral part of the lateral septum: intracellular studies from guinea pig brain slices. Exp. Brain Res. 102:297–302.

    Article  CAS  PubMed  Google Scholar 

  • Carette, B., Poulain, P., and Doutreland, 0. 1992. Electrical properties of neurons in the mediolateral part of the lateral septum: intracellular recordings from guineapig brain slices. Exp. Brain Res. 91:105–114.

    Article  CAS  PubMed  Google Scholar 

  • DeFrance, J.F. 1976. The Septal Nuclei. New York: Plenum Press.

    Google Scholar 

  • Descarries, L., Gisiger, V., and Steriade, M. 1997. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol. 53:603–625.

    Article  CAS  PubMed  Google Scholar 

  • Doutreland, O., Poulain, P., Carette, B., and Beauvillain, J.C. 1994. Light-and electron-microscopic study of electrophysiologically characterized neurons in the mediolateral part of the lateral septum of the guinea-pig. Cell Tissue Res. 275:543–553.

    Article  Google Scholar 

  • Dutar, P., Bassant, M.-H., Senut, M.-G, and Lamour, Y. 1995. The septohippocampal pathway: structure and function of a central cholinergic system. Physiol. Rev. 75:393–427.

    CAS  PubMed  Google Scholar 

  • Dutar, P., Lamour, Y., and Jobert, A. 1985. Septohippocampal neurons in the rat. An in vivo. intracellular study. Brain Res. 340:135–142.

    Article  CAS  PubMed  Google Scholar 

  • Dutar, P., Lamour, Y, Rascal, O., and Jobert, A. 1986. Septo-hippocampal neurons in the rat. Further study of their physiological and pharmacological studies. Brain Res. 365:325–334.

    Article  CAS  PubMed  Google Scholar 

  • Fisahn, A., Pike, F.G., Buhl, E.H., and Paulsen, O. 1998. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature. 94: 186–189.

    Article  Google Scholar 

  • Fisher, R., and Johnston, D. 1990. Differential modulation of single voltage-gated calcium channels by cholinergic and adrenergic agonists in adult hippocampal neurons. J. Neurophysiol. 64:1291–1302.

    CAS  PubMed  Google Scholar 

  • Fort, P., Khateb, A., Pegna, A., Mühlethaler, M., and Jones, B.E. 1995. Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro. pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur. J. Neurosci. 7(7):1502–1511.

    Article  CAS  PubMed  Google Scholar 

  • Fort, P., Khateb, A., Serafin, M., Mühlethaler, M., and Jones, B.E. 1998. Pharmacological characterization and differentiation of non-cholinergic nucleus basalis neurons in vitro. Neuroreport. 9(1): 61–65

    Article  CAS  PubMed  Google Scholar 

  • Fraser, D.D., and MacVicar, B.A. 1991. Low-threshold transient calcium current in rat hippocampal lacunosum-moleculare interneurons: kinetics and modulation by neurotransmitters. J. Neurosci. 11:2812–2820.

    CAS  PubMed  Google Scholar 

  • Freund, T.F., and Antal, M. 1988. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170–173.

    Article  CAS  PubMed  Google Scholar 

  • Frotscher, M., and Leranth, C. 1985. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comp. Neurol. 239:237–246.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher, J.P., and Hasuo, H. 1989. Excitatory amino acid-receptor-mediated EPSPs in rat dorsolateral septal nucleus neurones in vitro. J. Physiol. (Lond.). 418: 353–365.

    CAS  Google Scholar 

  • Gallagher, J.P., Zheng, F, Hasuo, H., and Shinnick-Gallagher, P. 1995. Activities of neurons within the rat dorsolateral septal nucleus (DLSN). Prog. Neurobiol. 45:373–395.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, W.H. 1988. Membrane properties of cell types within guinea-pig basal fore-brain nuclei in vitro. J. Neurophysiol. 59:1590–1612.

    CAS  PubMed  Google Scholar 

  • Griffith, W.H., and Matthews, R.T. 1986. Electrophysiology of AChE-positive neurons in basal forebrain neurons in vitro. In The Basal Forebrain: Anatomy to Function., eds. T.C. Napier, P. Kalivas, and I. Hanin, pp. 148–156. New York: Plenum.

    Google Scholar 

  • Griffith, W.H., Taylor, L., and Davis, MJ. 1994. Whole-cell and single-channel calcium currents in guinea pig basal forebrain neurons. J. Neuwphysiol. 71:-2359–2376.

    CAS  Google Scholar 

  • Gulyás, A.I., Seress, L., Toth, K., Acsády, L., Antal, M., and Fruend, T.F. 1991. Septal GABAergic neurons innervate inhibitory interneurons in the hippocampus of the Macaque monkey. Neuroscience. 41:381–390.

    Article  PubMed  Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.

    Article  CAS  PubMed  Google Scholar 

  • Hasuo, H., and Gallagher, J.P. 1990. Facilitatory action of muscarine on the slow afterdepolarization of rat dorsolateral septal nucleus neurons. Neurosci. Lett. 112:234–238.

    Article  CAS  PubMed  Google Scholar 

  • Hasuo, H., Akasu, T., and Gallagher, J.P. 1995. Muscarine increases a voltage-independent potassium conductance through an M4 receptor in rat dorsolateral septal nucleus neurons. Neurosci. Lett. 189:163–166.

    Article  CAS  PubMed  Google Scholar 

  • Hasuo, H., Akasu, T., and Gallagher, J.P. 1996. Muscarine activates a nonselective cation current through an M3 muscarinic receptor type in rat dorsolateral septal nucleus neurons. J. Neuwphysiol. 76:2221–2230.

    CAS  Google Scholar 

  • Hasuo, H., Gallagher, J.P., and Shinnick-Gallagher, P. 1988. Disinhibition in the rat septum is mediated by M1 muscarinic receptors. Brain Res. 438:323–327.

    Article  CAS  PubMed  Google Scholar 

  • Hill, D.R., and Bowery, N.G. 1981.3H-Baclofen and 3H-GABA bind to bicuculline insensitive GABAB sites in rat brain. Nature. 290:149–152.

    Article  CAS  PubMed  Google Scholar 

  • Huguenard, J.R. 1996. Low-threshold calcium currents in central nervous system neurons. Ann. Rev. Physiol. 58:329–348.

    Article  CAS  Google Scholar 

  • Jakab, R.L., and Leranth, C. 1995. Septum. In The Rat Nervous System, Second Edition., ed. G. Paxinos, pp. 405–442. San Diego: Academic Press Inc.

    Google Scholar 

  • Joëls, M., and Urban, U.A. 1984. Electrophysiological and pharmacological evidence in favor of amino acid neurotransmission in fimbria-fornix fibers innervating the lateral septal complex of rats. Exp. Brain Res. 54:455–462.

    Article  PubMed  Google Scholar 

  • Joels, M, Van Veldhuizen, M., Urban, U.A., and De Kloet, E.R. 1987. N-Acetyl-aspartylglutamate: binding sites and excitatory action in the dorsolateral septum of rats. Brain Res. 403:192–197.

    Article  CAS  PubMed  Google Scholar 

  • Jones, B.E., and Cuello, A.C. 1989. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons. Neuroscience. 31:37–61.

    Article  CAS  PubMed  Google Scholar 

  • Khateb, A., Fort, P., Alonso, A., Jones, B.E., and Mühlethaler, M. 1993. Pharmacological and immunohistological evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur. J. Neurosci. 5(5):541–547.

    Article  CAS  PubMed  Google Scholar 

  • Khateb, A., Fort, P., Pegna, A., Jones, B.E., and Mühlethaler, M. 1995b. Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience. 69(2):495–506.

    Article  CAS  PubMed  Google Scholar 

  • Khateb, A., Fort, P., Serafin, M., Jones, B.E., and Mühlethaler, M. 1995a. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro. J. Physiol. (Lond.). 487:623–638.

    CAS  Google Scholar 

  • Khateb, A., Fort, P., Williams, M., Serafin, M., Jones, B. E., and Mühlethaler, M. 1997. Modulation of cholinergic nucleus basalis neurons by acetylcholine and N-methyl-D-aspartate. Neuroscience. 81:47–55.

    Article  CAS  PubMed  Google Scholar 

  • Khateb, A., Fort, P., Williams, S., Serafin, M., Mühlethaler, M., and Jones, B.E. 1998. GABAergic input to cholinergic nucleus basalis neurons. Neuroscience. 86(3): 937–947.

    Article  CAS  PubMed  Google Scholar 

  • King, C., Recce, M., and O’Keefe, J. 1998. The rhythmicity of cells of the medial septumJdiagonal band of Broca in the awake freely moving rat: relationships with behavior and hippocampal theta. Eur. J. Neurosci. 10:464–477.

    Article  CAS  PubMed  Google Scholar 

  • Lamour, Y., Dutar, P., and Jobert, A. 1984. Septo-hippocampal and other medial septum-diagonal band neurons: Electrophysiological and pharmacological properties. Brain Res. 309:227–239.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.G., Chrobak, J. J., Sik, A., Wiley, R.G, and Buzsáki, G 1994. Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience. 62: 1033–1047.

    Article  CAS  PubMed  Google Scholar 

  • Leranth, C, Delier, T., and Buzsáki, G. 1992. Intraseptal connections redefined: lack of lateral septum to medial septum path. Brain Res. 583:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W, and Alreja, M. 1997. Atypical antipsychotics block the excitatory effects of serotonin in septohippocampal neurons in the rat. Neuroscience. 79(2):369–392.

    Article  CAS  PubMed  Google Scholar 

  • Llinás, R.R. 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 242:1654–1664.

    Article  PubMed  Google Scholar 

  • Markram, H., and Segal, M. 1990. Electrophysiological characteristics of cholinergic and noncholinergic neurons in rat medial septum-diagonal band complex. Brain Res. 513:171–174.

    Article  CAS  PubMed  Google Scholar 

  • McLennan, H., and Miller, JJ. 1974a. The hippocampal control of neuronal discharges in the septum of the rat. J. Physiol. (Lond.). 237:604–624.

    Google Scholar 

  • McLennan, H., and Miller, JJ. 1974b. Gamma-aminobutyric acid and inhibition in the septal nuclei of the rat. J. Physiol. (Lond.). 237:625–634.

    CAS  Google Scholar 

  • Morris, R.G.M., Anderson, E., Lynch, G.S., and Baudry, M. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 319:774–776.

    Article  CAS  PubMed  Google Scholar 

  • Onteniente, B., Geffard, M., Campistron, G, and Calas, A. 1987. An ultrastructural study of GABA-immunoreactive neurons in the septum of the rat. J. Neurosci. 7:48–54.

    CAS  PubMed  Google Scholar 

  • Onteniente, B., Tago, H., Kimura, H., and Maeda, T. 1986. Distribution of yaminobutyric acid-immunoreactive neurons in the septal region of the rat brain. J. Comp. Neurol. 222:69–80.

    Google Scholar 

  • Papez, J.W. 1937. Proposed mechanism of emotion. Arch. Neurol. Psychiatry. 38: 725–743.

    Article  Google Scholar 

  • Phelan, K.D., Hasuo, H., Twery, M., and Gallagher, J.P. 1989. Projection neurons in the rat dorsolateral septal nucleus possess axon collaterals. Neurosci. Lett. 97: 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Raisman, G 1966. The connexions of the septum. Brain. 89:317–348.

    Article  CAS  PubMed  Google Scholar 

  • Rye, D.B., Spacer, C.B., Lee, H.L., and Wainer, B.H. 1987. Pedunculopontine tegmental nucleus in the rat: cytoarchitecture, cytochemistry and some extrapyramidal connections of the mesopontine tegmentum. J. Comp. Neurol. 259:483–528.

    Article  CAS  PubMed  Google Scholar 

  • Schneggenburger, P., Lopez-Barneo, J., and Konnerth, A. 1992. Excitatory and inhibitory synaptic currents and receptors in rat medial septal neurones. J. Physiol. (Lond.). 445:261–276.

    CAS  Google Scholar 

  • Serafin, M., Williams, S., Khateb, A., Fort, P., and Muhlethaler, M. 1996. Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience. 75(3):671–675.

    Article  Google Scholar 

  • Shoji, S., Simms, D., McDaniel, W.C., and Gallagher, J.P. 1997. Chronic cocaine enhances γ-aminobutyric acid and glutamate release by altering presynaptic and not postsynaptic γ-aminobutyric acidB receptors within the rat dorsolateral septal nucleus. J. Pharmacol. Exp. Therap. 280:129–137.

    CAS  Google Scholar 

  • Shoji, S., Simms, D., Yamada, K., and Gallagher, IP. 1998. Cocaine administered in vitro. to brain slices from rats treated with cocaine chronically in vivo. results in an γ-aminobutyric acid receptor-mediated hyperpolarization recorded from the dorsolateral septum. J. Pharmacol. Exp. Therap. 286:509–518.

    CAS  Google Scholar 

  • Sim, J.A., and Griffith, W.H. 1991. Muscarinic agonists block a late-afterhyperpo-larization in medial septumJdiagonal band neurons in vitro. Neurosci. Lett. 129: 63–68

    Article  CAS  PubMed  Google Scholar 

  • Sim, J.A., and Griffith, W.H. 1996. Muscarinic inhibition of glutamatergic transmission onto rat magnocellular basal forebrain neurons in a thin-slice preparation. Eur. J. Neurosci. 8:880–891.

    Article  CAS  PubMed  Google Scholar 

  • Smythe, J.W., Colom, L.V., and Bland, B.H. 1992. The extrinsic modulation of hip-pocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. Neurosci. Biobehav. Rev. 16:289–308.

    Article  CAS  PubMed  Google Scholar 

  • Staiger, J.F., and Nürnberger, F. 1991. The efferent connections of the lateral septal nucleus in the guinea pig: intrinsic connectivity of the septum and projections to other telencephalic areas. Cell Tissue Res. 264:415–426.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, D.R., and Cotman, C.W. 1991. Long-term potentiation of excitatory and slow synaptic potentials in the hippocampal-septal projections of the rat. Brain Res. 558:120–122.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, D.R., Gallagher, J.P., and Shinnick-Gallagher, P. 1984. Intracellular recordings from rat dorsolateral septal neurons, in vitro. Brain Res. 305:353–365.

    Article  CAS  Google Scholar 

  • Stevens, D.R., Gallagher, J.P., and Shinnick-Gallagher, P. 1985. Further studies on the action of baclofen on neurons of the dorsolateral septal nucleus of the rat, in vitro. Brain Res. 358:360–365.

    Article  CAS  Google Scholar 

  • Stevens, D.R., Gallagher, J.P., and Shinnick-Gallagher, P. 1987. In vitro. studies of the role of gamma-aminobutyric acid in inhibition in the lateral septum of the rat. Synapse. 1:184–190.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, M., and Fox, S.E. 1990. Do septal neurons pace the hippocampal theta rhythm? TINS. 13:163–168.

    CAS  PubMed  Google Scholar 

  • Storm-Mathisen, I, and Woxen-Opsahle, M. 1978. Aspartate andJor glutamate may be transmitters in hippocampal efferents to septum and hypothalamus. Neurosci. Lett. 9:65–70.

    Article  CAS  PubMed  Google Scholar 

  • Toth, K., Freund, T.F., and Miles, R. 1997. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol. (Lond.). 500:463–474.

    CAS  Google Scholar 

  • Vanderwolf, C.H. 1975. Neocortical and hippocampal activation in relation to behavior: effects of atropine, eserine, phenothiazines and amphetamine. J. Comp. Physiol. Psychol. 88:300–323.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova, O.S. 1995. Expression, control and probable functional significance of the neuronal theta-rhythm. Prog. Neurobiol. 45:523–583.

    Article  CAS  PubMed  Google Scholar 

  • Witter, M.P., Daelmans, H.E.M., Jorritsma-Byham, B., Staiger, J.F., and Wouterlood, E.G. 1992. Restricted origin and distribution of projections from the lateral to medial septal complex in rat and guinea pig. Neurosci. Lett. 148:164–168.

    Article  CAS  PubMed  Google Scholar 

  • Woolf, N. J. 1991. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol. 37:475–524.

    Article  CAS  PubMed  Google Scholar 

  • Yadin, E., Thomas, E., Grishkat, H.L., and Strickland, C.E. 1993. The role of the lateral septum in anxiolysis. Physiol Behav. 53:1077–1083.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, F., and Gallagher, J.P. 1992. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron. 9:163–172.

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky, L. 1992. Synaptic organization of basal forebrain cholinergic projection neurons. In Neurotransmitter Interactions and Cognitive Functions., eds. E.D. Levin, M. Decker, and L. Butcher, pp. 27–65. Boston: Birkhauser.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallagher, J.P., Shinnick-Gallagher, P., Griffith, W.H. (2000). Cellular Pharmacology at Synapses Within the Septal Complex. In: Numan, R. (eds) The Behavioral Neuroscience of the Septal Region. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1302-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1302-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7086-7

  • Online ISBN: 978-1-4612-1302-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics