# Some Methods of Analyzing Solar Cell Efficiencies

## Abstract

A survey is given of various theoretical approaches to estimating solar cell efficiencies. We start (Section 4.2) with a development of the usual solar cell equation which is widely used and assume the so-called shift theorem. It is itself an approximation as is shown again here. A theory of the heterojunction solar cell is then developed (Section 4.4), following a brief survey of properties of efficiencies in general (Section 4.3). In this section we also give an introduction to the problem of estimating the effects of impact ionization. This is done by introducing a probability that a current carrier which has enough energy to impact ionize will actually do so. Following simpler special cases (Section 4.5), a more detailed theory of heterojunction cells with impact ionization is then presented (Section 4.6).

As well known, conversion efficiencies can be increased by connecting two or more cells in series, i.e., proceeding from a heterojunction ortandem cell to several cells, or even many cells. This problem is discussed in Section 4.7. It involves radiation theory, based on some elementary quantum mechanics and statistical mechanics. Thermophotovoltaic conversion (Section 4.8) has the benefit of yielding relatively high conversion efficiencies because the energy loss due to the thermalization of the current carries which occurs in a normal solar cell is here reduced. this is due to the fact that the solar energy is first absorbed by a material that reemits radiation at a lower temperature.

## Keywords

Solar Cell Solid Angle Impact Ionization Solar Energy Conversion Heterojunction Solar Cell## Preview

Unable to display preview. Download preview PDF.

## References

- [1]P. T. Landsberg and V. Bădescu: Solar energy conversion: List of efficiencies and some theoretical considerations,
*Progr. Quantum Electron.*22, 211, 1998; 22, 231, 1998.ADSCrossRefGoogle Scholar - [2] (a)M. A. Green, K. Emery, K. Bücher, D. L. King, and S. Igari: Solar cellq efficiency tables (version 10),
*Prog. Photovoltaics Research Appl.*5, 265, 1997. (b) Fraunhofer Institute for Solar Energy Systems, PV Charts, edition 9, update 1, 1997.CrossRefGoogle Scholar - [3]P. T. Landsberg: An introduction to the theory of photovoltaic cells,
*Solid-State Electron*18, 1043, 1975.ADSCrossRefGoogle Scholar - [4]P. T. Landsberg: Non-equilibrium concepts in solar energy conversion, in:
*Energy Transfer Processes in Condensed Matter*(ed. B. di Bartolo), NATO Advanced Study Institute, Plenum, New York, 1985.Google Scholar - [5]P. T. Landsberg and P. Baruch: The thermodynamics of the conversion of radiation energy for photovoltaics,
*J. Phys. A: Math. Gen.*22, 1911, 1989.ADSCrossRefGoogle Scholar - [6]V. Bădescu: On the thermodynamics of the conversion of partially polarized black-body radiation,
*J. Phys. III France*2, 1925, 1992.CrossRefGoogle Scholar - [7]V. Bădescu and P. T. Landsberg: Statistical thermodynamic foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion,
*J. Appl. Phys.*78, 2793, 1995.ADSCrossRefGoogle Scholar - [8]V. Bădescu, P. T. Landsberg, and A. De Vos: Statistical thermodynamic foundation for photovoltaic and photothermal conversion. III. Application to hybrid solar converters,
*J. Appl. Phys.*81, 2692, 1997.Google Scholar - [9]W. Shockley and H. Queisser: Detailed balance limit of efficiency of
*p-n*junction solar cells,*J. Appl. Phys.*32, 510, 1961.ADSCrossRefGoogle Scholar - [10]D. Trivich and P. Flinn: Maximum efficiency of solar energy conversion by quantum processes, in:
*Solar Energy Research*(eds. F. Daniels and J. A. Duffie), Thames and Hudson, London, 1955, p. 143.Google Scholar - [11]P. T. Landsberg, A. De Vos, and P. Baruch: Comparison of some efficiency factors in photovoltaics,
*J. Phys. Condens. Matter*3, 6415, 1991.ADSCrossRefGoogle Scholar - [12]S. R. Dhariwal and R. C. Sharma: Field-assisted recombination in silicon solar cells with heavily doped base: A loss mechanism for the open-circuit voltage,
*Semicond. Sci. Technol.*7, 315, 1992.ADSCrossRefGoogle Scholar - [13]H. Pauwels and A. De Vos: Determination of the maximum efficiency solar cell structure,
*Solid-State Electron.*24, 835, 1981.ADSCrossRefGoogle Scholar - [14]A. De Vos: Calculation of the maximum attainable efficiency of a single hetrojunction solar cell,
*Energy Conversion*16, 67, 1976.ADSCrossRefGoogle Scholar - [15]P. T. Landsberg:
*Recombination in Semiconductors*, Cambridge University Press, Cambridge, 1991, p. 251, Case 4.Google Scholar - [16]P. T. Landsberg, H. Nussbaumer and G. Willeke: Band-band impact ionization and solar cell efficiency,
*J. Appl. Phys.*74, 1993.Google Scholar - [17]S. M. Sze:
*Physics of Semiconductor Devices*, 2nd ed., Wiley, 1981, p. 86.Google Scholar - [18]W. Shockley:
*Electrons and Holes in Semiconductors*, Van Nostrand, New York, 1950, p. 314.Google Scholar - [19]M. A. Green:
*Solar Cells*, Prentice Hall, Englewood Cliffs, 1982, p. 80.Google Scholar - [20]P. T. Landsberg, J. K. Liakos, and A. De Vos: Effect of band-band impact ionization on the efficiency of heterojunction photovoltaic cells,
*12th EC Photovoltaic Solar Energy Conference*, Amsterdam, 1994, p. 1343.Google Scholar - [21]J. K. Liakos and P. T. Landsberg: Auger recombination and impact ionization in heterojunction photovoltaic cells,
*Semicond. Sci. Technol.*11, 1895, 1996.ADSCrossRefGoogle Scholar - [22]M. J. Adams and P. T. Landsberg: The theory of the injection laser, in:
*Gallium Arsenide Lasers*, (ed. C. H. Gooch), Wiley Interscience, New York, 1969.Google Scholar - [23]H. C. Casey Jr. and M. B. Panish:
*Heterostructure Lasers*, Academic Press, New York, 1978, Chap. 3.Google Scholar - [24]P. Kireev:
*La Physiques des Semiconducteurs*, Editions MIR, Moscow, 1975, Chapter 76, pp. 581–591.Google Scholar - [25]E. O. Kane: The
*k.p*method, in:*Semiconductors and Semimetals*1,*Physics of III–V Compounds*, Academic Press, New York, 1966.Google Scholar - [26]J. E. Parrott: The limiting efficiency of an edge-illuminated multigap solar cell,
*J. Phys. D*12, 441, 1979.ADSCrossRefGoogle Scholar - [27])J. E. Parrott: Analysis of an edge-illuminated graded-gap solar cell,
*Solid State Electron. Devices*12, Special Issue S 79, 1978.Google Scholar - [28]L. Landau and E. Lifchitz:
*Physique Statistique*, Editions MIR, Moscow, 1967.Google Scholar - [29]P. Würfel and W. Ruppel: Upper limit of thermophotovoltaic solar-energy conversion,
*IEEE Trans. Electron. Devices*ED-27, 745, 1980.ADSCrossRefGoogle Scholar - [30]P. T. Landsberg:
*Thermodynamics and Statistical Mechanics*, Dover, New York, 1990.Google Scholar - [31]W. Spirkl and H. Ries: Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,
*Phys. Rev. B*152, 11319–11325, 1995.ADSCrossRefGoogle Scholar - [32]G. L. Araujo and A. Marti: Absolute limiting efficiencies for photovoltaic energy conversion,
*Solar Energy Mater. Solar Cells*133, 213–240, 1994.CrossRefGoogle Scholar - [33]A. Marti and G. L. Araujo: Limiting efficiencies for photovoltaic energy conversion in multigap systems,
*Solar Energy Mater. Solar Cells*143, 203–222, 1996.CrossRefGoogle Scholar - [34]A. Marti, J. L. Balenzategui and R. F. Reyna: Photon recycling and Shockley’s diode equation,
*J. Appl. Phys.*182, 4067–4075, 1997.ADSCrossRefGoogle Scholar - [35]A. Luque and A. Marti: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,
*Phys. Rev. Lett.*178, 5014–5017, 1997.ADSCrossRefGoogle Scholar - [36]P. Würfel: Solar energy conversion with hot electrons from impact ionization,
*Solar Energy Mater. Solar Cells*146, 43–52, 1997.CrossRefGoogle Scholar - [37]V. Bădescu: Maximum conversion efficiency for the utilization of diffuse solar radiation,
*Int. J. Energy*116, 783–786, 1991.Google Scholar - [38]V. Bădescu and P. T. Landsberg: Influence of photon recycling on solar cell efficiencies,
*Semicond. Sci. Technol.*12, 1491–1497, 1997.ADSCrossRefGoogle Scholar