Skip to main content

Bifurcations of the Complex Henon Map

  • Conference paper
Dynamics of Algorithms

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 118))

  • 219 Accesses

Abstract

The complex Henon map H(z,ω) = (z 2 + c + , dz) is the complex version of the real map studied by Henon [H]. It is also the first interesting generalization of the quadratic polynomial P c (z) = z 2 + c to two complex variables. There are some essential differences between the one and two complex variables mappings. In particular, the bifurcation locus of the Henon map is not the connectivity locus of the Julia set as in the one-complex-variable case. We will relate the complex mapping to the mapping of two real variables and to one-complex-variable mappings. We will outline a computer assisted proof to compute the location of one particular type of bifurcation and describe its relationship with attracting orbits. The study of the bifurcation locus of the complex Henon map is particularly important because it gives insight into the chaotic behavior of the real Henon map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedford, E., Smillie, J., Polynomial diffeomorphism s of ℂ2: Currents, equilibrium measure and hyperbolicity, Inv. Math., 103 (1991), 69–99.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Smillie, J., Polynomial diffeomorphisms of ℂ 2, III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann., 294, no. 3 (1992), 395–420.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedicks, M. and Carleson, L., The dynamics of the Henon map, Ann. Of Math., 133 (1991), 73–170.

    Article  MathSciNet  MATH  Google Scholar 

  4. Buzzard, G., Persistence of homoclinic tangencies infinitely many sinks for automorphisms of 2, Ann. of Math., 145 (1997), 389–417.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fornaess, J. E. and Sibony, N., Complex Henon Mappings in2 and FatouBieberbach domains, Duke Math. J., 65 (1992), 345–380.

    MathSciNet  MATH  Google Scholar 

  6. Fornaess, J. E. and Sibony, N., Complex dynamics in higher dimension. I, Asterisque, 222 (1994), 201–232.

    MathSciNet  Google Scholar 

  7. Fornaess, J. E. and Sibony, N., Complex dynamics in higher dimension. II. Modern Methods in complex Analysis, Ann Studies, 137 135–182.

    Google Scholar 

  8. Fornaess, J. E. and Sibony, N., Classification of recurrent domains for some holomorphic mappings, Math. Ann., 301 (1995), 813–820.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fornaess, J. E. and sibony, N., Holomorphic symplectomorphisms in2, World Sc. Series, Appl. Anal., 4 Dynamical Systems and Applications.

    Google Scholar 

  10. Fornaess, J. E. and Sibony, N., Holomorphic symplectomorphisms in2 p, Duke Math J., 82 (1996), 521–533.

    Article  MathSciNet  Google Scholar 

  11. Fornaess, J.E., and Gavosto, E.A., Existence of some strange attractors, C. R. Acad. Sci. Paris, t. 313, Série I (1991), 495–498.

    MathSciNet  Google Scholar 

  12. Fornaess, J.E., and Gavosto, E.A., Existence of Generic Homoclinic Tangencies for Hénon Mappings, J. Geom. Anal., 2 (1992).

    Google Scholar 

  13. Fornaess, J.E., and Gavosto, E.A., Tangencies for Real and Complex Henon Maps: An Analytic Method, to appear in Experimental Mathematics.

    Google Scholar 

  14. Fornaess, J.E., and Gavosto, E.A., The Mandelbrot Set for the Complex Hénon Map, preprint.

    Google Scholar 

  15. Franceschini, V., and Russo, L., Stable and unstable manifolds of the Henon mapping, J. Stat. Phys., 25, no. 4 (1981), 757–769.

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedland, S. and Milnor, J., Dynamical properties of plane polynomial automorphisms, Ergodic Theory and Dynamical Systems (1989), 67–99.

    Google Scholar 

  17. Gavosto, E., Attracting basins in2, to appear in J. Geom. Anal.

    Google Scholar 

  18. Henon, M, A two dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), 69–77.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hubbard, J., The Henon mapping in the complex domain, in Chaotic Dynamics and Fractals, ed. M. Barnsley and S. Demko, Academic Press, Orlando (1986), 101–111.

    Google Scholar 

  20. Hubbard, J. and Oberste-Vorth, R., Henon mappings in the complex domain. I. The global topology of dynamical space, Inst. Hautes Etudes Sci. Publ. Math., 79 (1994), 5–46.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kan, I., kocak, H. and Yorke, J.A., Persistent homoclinic tangencies in the Henon family, Physica D, 83 (1995), 313–325.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mora, L. and Viana, M, Abundance of Strange Attractors, Acta Math., 171 no. 1 (1993), 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  23. Newhouse, S, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974) 9–18.

    MathSciNet  MATH  Google Scholar 

  24. Stensones, B., Fatou-Bieberbach domains with smooth boundary, Ann. of Math., 145 (1997), 365–377.

    Article  MathSciNet  Google Scholar 

  25. Robinson, C., Bifurcations to infinitely many sinks, Comm. Math. Phys., 90 (1983), 433–459.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Gavosto, E.A. (2000). Bifurcations of the Complex Henon Map. In: de la Llave, R., Petzold, L.R., Lorenz, J. (eds) Dynamics of Algorithms. The IMA Volumes in Mathematics and its Applications, vol 118. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1274-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1274-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7073-7

  • Online ISBN: 978-1-4612-1274-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics