Skip to main content

The Index Form and the Bonnet—Myers Theorem

  • Chapter
An Introduction to Riemann-Finsler Geometry

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 200))

  • 3290 Accesses

Abstract

Let (M, F) be a Finsler manifold, where F is C∞ on TM \0 and is positively (but perhaps not absolutely) homogeneous of degree 1. Fix TT p M. Consider the constant speed geodesic σ(t) = exp p (tT), 0 ⩽ tr that emanates from p = σ(0) and terminates at q = σ(r). If there is no confusion, label its velocity field by T also. Let D T denote covariant differentiation along σ, with reference vector T. This concept was introduced in the Exercise portion of 5.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), 281–322.

    MathSciNet  MATH  Google Scholar 

  2. L. Auslander, On curvature in Finsler geometry, Trans. AMS 79 (1955), 378–388.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces, Graduate Texts in Mathematics 115, Springer-Verlag, 1988.

    Google Scholar 

  4. J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North Holland/American Elsevier, 1975.

    Google Scholar 

  5. P. Dazord, Propriétés globales des géodésiques des Espaces de Finsler, Theses, Université de Lyon, 1969.

    Google Scholar 

  6. M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.

    Google Scholar 

  7. S. Kobayashi, On conjugate and cut loci, Global Differential Geometry, S. S. Chern, ed., Math. Assoc. America, 1989, pp. 140–169.

    Google Scholar 

  8. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Japan, 1986.

    MATH  Google Scholar 

  9. B. O’Neill, Elementary Differential Geometry, 2nd ed., Academic Press, 1997.

    Google Scholar 

  10. I. M. Singer and J. A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Undergraduate Texts in Mathematics, Springer-Verlag, 1976.

    Google Scholar 

  11. M. Spivak, Differential Geometry, vol. IV, Publish or Perish, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bao, D., Chern, SS., Shen, Z. (2000). The Index Form and the Bonnet—Myers Theorem. In: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1268-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1268-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7070-6

  • Online ISBN: 978-1-4612-1268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics