Skip to main content

The Gauss Lemma and the Hopf-Rinow Theorem

  • Chapter
Book cover An Introduction to Riemann-Finsler Geometry

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 200))

  • 3279 Accesses

Abstract

Fix xM. In T x M, we define the tangent spheres

$${S_x}(r): = \{ y \in {T_x}M:F(x,y) = r\} $$
((6.1.1))

and open tangent balls

$${B_x}(r): = \{ y \in {T_x}M:F(x,y) = r\} $$
((6.1.2))

of radii r. The exponential map exp x is a local diffeomorphism at the origin of T x M because its derivative there is the identity; see §5.3. Thus, for r small enough, not only does exp x [S x (r)] makes sense, it is also diffeomorphic to S x (r). The image set

$${\exp _x}[{S_x}(r)]$$

is called a geodesic sphere in M centered at x. We later show why it can be said to have radius equal to r.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bao and S. S. Chern, On a notable connection in Finsler geometry, Houston J. Math. 19 (1993), 135–180.

    MathSciNet  MATH  Google Scholar 

  2. H. Busemann and W. Mayer, On the foundations of the calculus of variations, Trans. AMS 49 (1941), 173–198.

    Article  MathSciNet  Google Scholar 

  3. P. Dazord, Propriétés globales des géodésiques des Espaces de Finsler, Theses, Université de Lyon, 1969.

    Google Scholar 

  4. B. O’Neill, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, 1983.

    Google Scholar 

  5. [U1] C. Udriste, Appendix 4. Completeness and convexity on Finsler manifolds, Convex Functions and Optimization Methods on Riemannian Manifolds, MAIA 297, Kluwer Academic Publishers, 1994, pp. 318–330.

    Google Scholar 

  6. C. Udriste, Completeness of Finsler manifolds, Publ. Math. Debrecen 42 (1993), 45–50.

    MathSciNet  MATH  Google Scholar 

  7. J. H. C. Whitehead, Convex regions in the geometry of paths, Quarterly J. Math. Oxford, Ser. 3 (1932), 33–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bao, D., Chern, SS., Shen, Z. (2000). The Gauss Lemma and the Hopf-Rinow Theorem. In: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1268-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1268-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7070-6

  • Online ISBN: 978-1-4612-1268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics