Skip to main content

Riemannian Manifolds and Two of Hopf’s Theorems

  • Chapter
Book cover An Introduction to Riemann-Finsler Geometry

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 200))

  • 3262 Accesses

Abstract

A Riemannian metric g on a manifold M is a family of inner products {g x}xM such that the quantities

$${g_{ij}}(x): = g\left( {\frac{\partial }{{\partial {x^i}}},\frac{\partial }{{\partial {x^i}}}} \right)$$

are smooth in local coordinates. The Finsler function F(x, y) of a Riemannian manifold has the characteristic structure

$$F(x,y) = \sqrt {{g_{ij(x)}}{y^i}{y^j}} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Antonelli and B. Lackey (eds.), The Theory of Finslerian Laplacians and Applications, MAIA 459, Kluwer Academic Publishers, 1998.

    Google Scholar 

  2. D. Bao and B. Lackey, Randers surfaces whose Laplacians have completely positive symbol, Nonlinear Analysis 38 (1999), 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bao and B. Lackey, A geometric inequality and a Weitzenböck formula for Finsler surfaces, The Theory of Finslerian Laplacians and Applications, P. Antonelli and B. Lackey (eds.), MAIA 459, Kluwer Academic Publishers, 1998, pp. 245–275.

    Google Scholar 

  4. J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North Holland/American Elsevier, 1975.

    Google Scholar 

  5. S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Universitext, 2nd ed., Springer-Verlag, 1990.

    Google Scholar 

  6. J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer-Verlag, 1995.

    Google Scholar 

  7. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. I, Wiley-Interscience, 1963 (1996).

    Google Scholar 

  8. B. O’Neill, Elementary Differential Geometry, 2nd ed., Academic Press, 1997.

    Google Scholar 

  9. J. Schouten and D. Struik, On some properties of general manifolds relating to Einstein’s theory of gravitation, Amer. J. Math. 43 (1921), 213–216.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Schoen and S. T. Yau, Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, vol. I, International Press, 1994.

    Google Scholar 

  11. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott-Foresman, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bao, D., Chern, SS., Shen, Z. (2000). Riemannian Manifolds and Two of Hopf’s Theorems. In: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1268-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1268-3_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7070-6

  • Online ISBN: 978-1-4612-1268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics