Skip to main content

Finsler Manifolds and the Fundamentals of Minkowski Norms

  • Chapter
  • 3283 Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 200))

Abstract

Finsler geometry has its genesis in integrals of the form

$$\int_a^b {F\left( {{x^1}, \ldots ,{x^n};\frac{{d{x^1}}}{{dt}}, \ldots ,\frac{{d{x^n}}}{{dt}}} \right)} dt$$

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Antonelli and R. H. Bradbury, Volterra-Hamilton Models in the Ecology and Evolution of Colonial Organisms, World Scientific, 1996.

    Google Scholar 

  2. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, FTPH 58, Kluwer Academic Publishers, 1993.

    Google Scholar 

  3. H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), 281–322.

    MathSciNet  MATH  Google Scholar 

  4. F. Brickell, A new proof of Deicke’s theorem on homogeneous functions, Proc. AMS 16 (1965), 190–191.

    MathSciNet  MATH  Google Scholar 

  5. D. Bao and S.S. Chern, A note on the Gauss-Bonnet theorem for Finsler spaces, Ann. Math. 143 (1996), 233–252.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Cont. Math. 196 (1996), 27–42.

    Article  Google Scholar 

  7. R. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Mathematica, New Series 3 (1997), 161–203.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bryant, Finsler surfaces with prescribed curvature conditions, Aisenstadt Lectures, in preparation.

    Google Scholar 

  9. A. Deicke, Über die Finsler-Raume mit A i = 0, Arch. Math. 4 (1953), 45–51.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Funk, Über zweidimensionale Finslersche Räume, insbesondere über solche mit geradlinigen Extremalen und positiver konstanter Krümmung, Math. Zeitschr. 40 (1936), 86–93.

    Article  MathSciNet  Google Scholar 

  11. P. Funk, Eine Kennzeichnung der zweidimensionalen elliptischen Geometric, Österreichische Akad. der Wiss. Math., Sitzungsberichte Abteilung II 172 (1963), 251–269.

    MathSciNet  MATH  Google Scholar 

  12. M. Hashiguchi and Y. Ichijyō, On some special (α, β)-metrics, Rep. Fac. Sci. Kagoshima Univ. 8 (1975), 39–46.

    MATH  Google Scholar 

  13. S. Kikuchi, On the condition that a space with (α, β)-metric be locally Minkowskian, Tensor, N.S. 33 (1979), 242–246.

    MathSciNet  MATH  Google Scholar 

  14. M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto Univ. (Kyoto Daigaku J. Math.) 29-31 (1989), 17–25.

    Google Scholar 

  15. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Japan, 1986.

    MATH  Google Scholar 

  16. M. Matsumoto, On Finsler spaces with Randers’ metric and special forms of important tensors, J. Math. Kyoto Univ. (Kyoto Daigaku J. Math.) 14 (1974), 477–498.

    MathSciNet  MATH  Google Scholar 

  17. T. Okada, On models of projectively flat Finsler spaces of constant negative curvature, Tensor, N.S. 40 (1983), 117–124.

    MathSciNet  MATH  Google Scholar 

  18. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959.

    Google Scholar 

  19. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59 (1941), 195–199.

    Article  MathSciNet  Google Scholar 

  20. C. Shibata, H. Shimada, M. Azuma, and H. Yasuda, On Finsler spaces with Randers’ metric, Tensor, N.S. 31 (1977), 219–226.

    MathSciNet  MATH  Google Scholar 

  21. H. Yasuda, On the indicatrices of a Finsler space, Tensor, N.S. 33 (1979), 213–221.

    MathSciNet  MATH  Google Scholar 

  22. H. Yasuda and H. Shimada, On Randers spaces of scalar curvature, Rep. on Math. Phys. 11 (1977), 347–360.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bao, D., Chern, SS., Shen, Z. (2000). Finsler Manifolds and the Fundamentals of Minkowski Norms. In: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1268-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1268-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7070-6

  • Online ISBN: 978-1-4612-1268-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics