Skip to main content

Comparison between different approaches to the biomagnetic inverse problem — workshop report

  • Conference paper
Book cover Biomag 96

Abstract

In view of the eminent importance models have for the interpretation of biomagnetic data, it is a matter of concern that a generally accepted strategy for the analysis of experimental data is not in sight. It seems evident that the future prospects of biomagnetic investigations as compared to other functional imaging techniques (e.g. PET, fMRI) will decisively depend on the success of new data analysis techniques. The necessity to develop new modeling strategies is underlined by the fact that the availability of whole-head magnetometer devices necessitates the development of better models: First, more realistic volume conductor models are required, because simple models like a homogeneous sphere are not capable of providing a good approximation if the measurement area Covers the whole head rather than a relatively small area. Second, the number of sources to be considered generally increases with increasing measurement area so that simple source models like the equivalent current dipole become more and more obsolete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crowley, T., Haupt, C., and Kynor, D. A weighting matrix to remove depth bias in the linear biomagnetic inverse problem with application to cardiology (this volume).

    Google Scholar 

  2. Dale, A. and Sereno, M. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cognit. Neurosci., 1993, 5: 162–176.

    Article  Google Scholar 

  3. Forss, N., Hari, R., Salmelin, R., Ahonen, A., Hämäläinen, M., Kajola, M., Knuutila, J., and Simola, J. Activation of the human posterior parietal cortex by median nerve Stimulation. Exp. Brain Res., 1994, 99: 309–315.

    Article  Google Scholar 

  4. Greenblatt, R. Probabilistic reconstruction of multiple sources in the bioelectromagnetic inverse problem. Inverse Problems, 1993, 9: 271–284.

    Article  ADS  MATH  Google Scholar 

  5. Hämäläinen, M. and Ilmoniemi, R. Interpreting measured magnetic fields of the brain: Estimates of current distributions. Technical Report TKK-F-A559, Helsinki University of Technology, Helsinki, 1984.

    Google Scholar 

  6. Hansen, P. Regularization tools, a Matlab package for analysis and Solution of discrete ill-posed problems (available in postscript from http://www.mathworks.com/), 1993.

    Google Scholar 

  7. Huotilainen, M., Ilmoniemi, R., Tiitinen, H., Lavikainen, J., Alho, K., Kajola, M., and Näätänen, R. The projection method in removing eye-blink artefacts from multichannel MEG measurements at the site of pain. In Baumgartner, C., Deecke, L., Stroink, G., and Williamson, S., editors, Biomagnetism: Fundamental Research and Clinical Applications, pages 363–367, Amsterdam, 1995. Elsevier Science, IOS Press.

    Google Scholar 

  8. Ilmoniemi, R. The projection method in magnetoencephalography. Finnish patent application No. 925461, Nov. 30, 1992. International patent application No. PCT/F193/00504, Nov. 30, 1993.

    Google Scholar 

  9. Ilmoniemi, R. and Williamson, S. Analysis for the magnetic alpha rhythm in signal space. Soc. Neurosci. Abstr., 1987, 13 (2): 46.

    Google Scholar 

  10. Ilmoniemi, R., Williamson, S., and Hostetier, W. New method for the study of spontaneous brain activity. In Atsumi, K., Kotani, M., Ueno, S., Katila, T., and Williamson, S., editors, Biomagnetism ‘87, pages 182–185, Tokyo, 1988. Tokyo Denki University Press.

    Google Scholar 

  11. Lütkenhöner, B., Greenblatt, R., Hämäläinen, M., Mosher, J., Scherg, M., Tesche, C., and Valdes Sosa, P. http://hobbes.uni-muenster.de/SantaFeWorkshop1996 ( Homepage of the Santa Fe 1996 Modeling Workshop).

  12. Mosher, J. Subspace angles: A metric for comparisons in EEG and MEG (this volume).

    Google Scholar 

  13. Mosher, J. and Leahy, R. Music recursively applied to the generation of source models in EEG and MEG (in preparation).

    Google Scholar 

  14. Mosher, J., Lewis, P., and Leahy, R. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng., 1992, 39: 541–557.

    Article  Google Scholar 

  15. Pascual-Marqui, R., Michel, C., and Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol., 1994, 18: 49–65.

    Article  Google Scholar 

  16. Sakamoto, Y., Ishiguro, M., and Kitagawa, G. Akaike Information Criterion Statisiics. Tokyo, KTK Scientific Publishers, 1986.

    Google Scholar 

  17. Scherg, M. Functional imaging and localization of electromagnetic brain activity. Brain Topography, 1992, 5: 103–111.

    Article  Google Scholar 

  18. Scherg, M. and von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroenceph. clin. Neurophysiol., 1985, 62: 32–44.

    Article  Google Scholar 

  19. Tesche, C., Uusitalo, M., Ilmoniemi, R., Huotilainen, M., Kajola, M., and Salonen, O. Signal-space pro-jections of MEG data characterize both distributed and well-localized neuronal sources. Electroenceph. Clin. Neurophysiol., 1995, 95: 189–200.

    Article  Google Scholar 

  20. Tesche, C., Uusitalo, M., Ilmoniemi, R., and Kajola, M. Characterizing the local oscillatory content of spontaneous cortical activity during mental imagery. Cog. Brain Res., 1995, 2: 243–249.

    Article  Google Scholar 

  21. Uusitalo, M. The projection method in magnetoencephalography. Sc. thesis, Helsinki University of Technology (in Finnish ), 1993.

    Google Scholar 

  22. Uutela, K., Hämäläinen, M., and Salmelin, R. Global optimization in the localization of brain activity (this volume).

    Google Scholar 

  23. Wahba, G. Spline Models for Observational Data. Philadelfia, Society for Industrial and Applied Mathematics, 1990.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Lütkenhöner, B. et al. (2000). Comparison between different approaches to the biomagnetic inverse problem — workshop report. In: Aine, C.J., Stroink, G., Wood, C.C., Okada, Y., Swithenby, S.J. (eds) Biomag 96. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1260-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1260-7_41

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7066-9

  • Online ISBN: 978-1-4612-1260-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics