Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 139))

Abstract

Daniel Rutherford is credited with the discovery of nitrogen (N) in 1772. A.L. Lavoisier, the 18th century French chemist, called this element “azote” which translates to “without life” because free N is incapable of supporting life: a fitting name for this element given the paradoxes it presents to society and its role in global ecology. Despite being the most abundant element in the atmosphere, usually quoted as 78% by volume, primarily as N2, life on the planet does not rely on either the uptake or release of N for the two most important complimentary biological processes, namely respiration and photosynthesis. Nonetheless, N has long been heralded as the most commonly limiting mineral nutrient for plant growth around the globe, and indeed is essential for the formation of amino acids, and thus proteins, for all life forms. No other element has been studied more extensively in the context of agricultural and forest ecosystems than N, yet at no time in the past has there been greater interest in research addressing information needs regarding N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Driscoll CT (1997) Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochem Cycl 1:639–648.

    Article  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypothesis revisited. BioScience 48:921–943.

    Article  Google Scholar 

  • Aber J (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Tree 7:220–223.

    PubMed  CAS  Google Scholar 

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386.

    Article  Google Scholar 

  • Adams MB, Angradi TR (1996) Decomposition and nutrient dynamics of hardwood leaf litter in the Fernow Whole-Watershed Acidification Study. For Ecol Manage 83:61–69.

    Article  Google Scholar 

  • Adams MB, Angradi TR, Kochenderfer JN (1997) Stream water and soil solution responses to 5 years of nitrogen and sulfur additions at the Fernow Experimental Forest, West Virginia. For Ecol Manage 95:79–91.

    Article  Google Scholar 

  • Adams MB, Edwards PJ, Wood F, Kochenderfer JN (1993) Artificial watershed acidification on the Fernow Experimental Forest, USA. J Hydrol 150:505–519.

    Article  CAS  Google Scholar 

  • Adams MB, Kochenderfer JN, Wood F, Angradi TR, Edwards PJ (1994) Forty Years of Hydrometeorological Data from the Fernow Experimental Forest, West Virginia. Gen Tech Rep NE-184. United States Department of Agriculture (USDA) Forest Service, Northeastern Forest Experiment Station, Radnor, PA.

    Google Scholar 

  • Ågren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54:185–197.

    Article  PubMed  Google Scholar 

  • Bailey RG, Avers PE, King T, McNabb WH (1994) Ecoregions and Subregions of the United States. United States Department of Agriculture (USDA) Forest Service, Washington, DC.

    Google Scholar 

  • Bull KR (1991) The critical loads/levels approach to gaseous pollutant emission control. Environ Pollut 69:105–123.

    Article  PubMed  CAS  Google Scholar 

  • Carnol M, Ineson P, Dickinson AL (1997) Soil solution nitrogen and cations influenced by (NH4)2SO4 deposition in a coniferous forest. Environ Pollut 97:1–10.

    Article  PubMed  CAS  Google Scholar 

  • DeWalle DR, Tepp JS, Swistock BR, Sharpe WE, Edwards PJ (1999) Tree-ring cation response to experimental watershed acidification in West Virginia and Maine. J Environ Qual 28:299–309.

    Article  CAS  Google Scholar 

  • Dise NB, Wright RF (1992) The NITREX Project (Nitrogen Saturation Experiments). Ecosystem Research Report 2. Commission of European Communities, Brussels, Belgium.

    Google Scholar 

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manage 71:153–161.

    Article  Google Scholar 

  • Driscoll CT, Van Dreason R (1993) Seasonal and long-term temporal patterns in the chemistry of Adirondack lakes. Water Air Soil Pollut 67:319–344.

    Article  CAS  Google Scholar 

  • Fenn ME, Poth MA, Johnson DW (1996) Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. For Ecol Manage 82: 211–230.

    Article  Google Scholar 

  • Fernandez IJ, Rustad LE, David MB, Nadelhoffer KJ, Mitchell MJ (1999) Mineral soil and solution responses to experimental N and S enrichment at the Bear Brook Watershed in Maine (BBWM). Environ Monit Assess 55: 165–185.

    Article  CAS  Google Scholar 

  • Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24.

    Article  CAS  Google Scholar 

  • Gilliam FS, Adams MB, Yurish BM (1995) Ecosystem nutrient responses to chronic nitrogen inputs at Fernow Experimental Forest, West Virginia. Can J For Res 26:196–205.

    Article  Google Scholar 

  • Jeffries RL, Maron JL (1997) The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes. Tree 12:74–77.

    Google Scholar 

  • Johnson D (1992) Nitrogen retention in forest soils. J Environ Qual 21:1–12.

    Article  Google Scholar 

  • Kahl SJ, Norton SA, Fernandez IJ, Nadelhoffer KJ, Driscoll CT, Aber JD (1993) Experimental inducement of nitrogen saturation at the watershed scale. Environ Sci Tech 27:565–568.

    Article  CAS  Google Scholar 

  • Lawrence GB, David MB, Shortle WC (1995) A new mechanism for calcium loss in forest-floor soils. Nature 378:162–165.

    Article  CAS  Google Scholar 

  • Lawrence GB, David MB, Vailey SW, Shortle WC (1997) Assessment of calcium status in soils of red spruce forests in the northeastern United States. Biogeochemistry 38:19–39.

    Article  CAS  Google Scholar 

  • Likens GE, Driscoll CT, Busco DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246.

    Article  CAS  Google Scholar 

  • Løkke H, Bak J, Falkengren-Grerup U, Finlay RD, Ilvesniemi H, Nygaard PH, Starr M (1996) Critical loads of acidic deposition for forest soils: Is the current approach adequate? Ambio 25:510–516.

    Google Scholar 

  • Magill AH, Downs MR, Nadelhoffer KJ, Hallet RA, Aber JD (1996) Forest ecosystem reponse to four years of chronic nitrate and sulfate additions at Bear Brooks Watershed, Maine, USA. For Ecol Manage 84:29–37.

    Article  Google Scholar 

  • McNulty S, Aber JD (1993) Effects of chronic nitrogen additions on nitrogen cycling in a high-elevation spruce-fir stand. Can J For Res 23:1252–1263.

    Article  CAS  Google Scholar 

  • McNulty S, Aber JD, McLellan TM, Katt SM (1990) Nitrogen cycling in high elevation forests of the northeastern US in relation to nitrogen deposition. Ambio 19:30–40.

    Google Scholar 

  • McNulty S, Aber JD, Newman SD (1996) Nitrogen saturation in a high elevation New England spruce-fir stand. For Ecol Manage 84:109–121.

    Article  Google Scholar 

  • Mitchell MJ, Driscoll CT, Kahl JS, Likens GE, Murdoch PS, Pardo H (1996) Climatic control on nitrate loss from forested watersheds in the northeast United States. Environ Sci Technol 30:2609–2612.

    Article  CAS  Google Scholar 

  • Nadelhoffer K, Downs M, Fry B, Aber J (1999) Controls on N retention and exports in a forested watershed. Environ Monit Assess 55:187–210.

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ et al. (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148.

    Article  CAS  Google Scholar 

  • NADP (1990) National Atmospheric Deposition Program (IR-7)/National Trends Network: 1990. Annual Report: NADP/NTN Coordination Office. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO.

    Google Scholar 

  • Nihlgård B (1985) The ammonium hypothesis—an additional explanation to the forest dieback in Europe. Ambio 14:2–8.

    Google Scholar 

  • Nilsson J (1986) Critical Loads for Nitrogen and Sulphur. Nordsk ministerrånd. MilJørapport 11. Copenhagen, Denmark.

    Google Scholar 

  • Nilsson J, Grennfelt P (1988) Critical Loads for Sulphur and Nitrogen. Report from a Workshop Held at Skokloster, Sweden, 19-24 March 1988. MilJørapport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark.

    Google Scholar 

  • Norton SA, Fernandez IJ (eds) (1999) The Bear Brook Watershed in Maine: A Paired Watershed Experiment—The First Decade (1987-1997). Kluwer Academic, Boston, MA.

    Google Scholar 

  • Norton SA, Kahl JS, Fernandez IJ, Rustad LE, Scofield JP, Haines TA (1994) Response of the West Bear Brook Watershed, Maine, USA, to the addition of (NH4)2SO4: 3-year results. For Ecol Manage 68:61–73.

    Article  Google Scholar 

  • Peterjohn WT, Adams MB, Gilliam FS (1996) Symptoms of nitrogen saturation in two central Appalachian hardwood forest ecosystems. Biogeochemistry 35: 507–522.

    Article  Google Scholar 

  • Rustad LE, Fernandez IJ, David MB, Mitchell MJ, Nadelhoffer KJ, Fuller RB (1996) Experimental soil acidification and recovery at the Bear Brook Watershed in Maine. Soil Sci Soc Am J 60:1933–1943.

    Article  CAS  Google Scholar 

  • Rustad LE, Fernandez IJ, Fuller RB, David MB, Nodvin SC, Halteman WA (1993) Soil solution response to acidic deposition in a northern hardwood forest. Agric Ecosyst Environ 47:117–134.

    Article  CAS  Google Scholar 

  • Rustad LE, Kahl JS, Norton SA, Fernandez IJ (1994) Underestimation of dry deposition by throughfall in mixed northern hardwood forests. J Hydrol 162:319–336.

    Article  CAS  Google Scholar 

  • Shortle WC, Smith WC (1988) Aluminum-induced calcium deficiency syndrome in declining red spruce. Science 240:1017–1018.

    Article  PubMed  CAS  Google Scholar 

  • Shortle WC, Smith WC, Minocha R, Alexeyev VA (1995) Similar patterns of change in stemwood calcium concentrations in red spruce and Siberian fir. J Biogeogr 22:467–473.

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental Chemistry of Lakes and Reservoirs. American Chemical Society, Washington, DC, pp 223–284.

    Google Scholar 

  • Sullivan TJ, Eilers JM, Cosby BJ, Vaché KB (1997) Increasing role of nitrogen in the acidification of surface waters in the Adirondack Mountains, New York. Water Air Soil Pollut 95:313–336.

    CAS  Google Scholar 

  • Sullivan TJ (1997) Ecosystem manipulation experimentation as a means of testing a biogeochemical model. Environ Manage 21:15–21.

    Article  PubMed  Google Scholar 

  • Vitousek PM (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Applic 7:737–750.

    Google Scholar 

  • Wang Z, Fernandez IJ (1998) Soil type and forest vegetation influences on forest floor nitrogen dynamics in the Bear Brook Watershed in Maine (BBWM). Environ Monit Assess 55:221–234.

    Article  Google Scholar 

  • Weber KL, Wiersma GB (1997) Trace element concentrations in mosses collected from a treated experimental forest watershed. Toxic Environ Chem 65:17–29.

    Article  Google Scholar 

  • White GJ, Fernandez IJ, Wiersma GB (1999) Impacts of ammonium sulfate treatment on foliar chemistry of forest trees at the Bear Brooks Watershed in Maine. Environ Monit Assess 55:235–250.

    Article  CAS  Google Scholar 

  • Willard KW, DeWalle DR, Edwards PJ, Schnabel RR (1997) Indicators of nitrate export from forested watersheds of the mid-Appalachians, United States of America. Global Biogeochem Cycl 11:649–656.

    Article  Google Scholar 

  • Williams MW, Baron JS, Caine N, Sommerfeld R, Sanfrod R Jr. (1996) Nitrogen saturation in the Rocky Mountains. Environ Sci Technol 30(20):640–646.

    Article  CAS  Google Scholar 

  • Wright RF, van Breeman R (1995) The NITREX Project: an introduction. For Ecol Manage 71:1–5.

    Article  Google Scholar 

  • Wright RF, Rasmussen L (eds) (1998) The whole ecosystem experiments of the NITREX and EXMAN projects. For Ecol Manage Vol. 101.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernandez, I.J., Adams, M.B. (2000). Nitrogen Saturation in Experimental Forested Watersheds. In: Mickler, R.A., Birdsey, R.A., Hom, J. (eds) Responses of Northern U.S. Forests to Environmental Change. Ecological Studies, vol 139. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1256-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1256-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7064-5

  • Online ISBN: 978-1-4612-1256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics