Skip to main content

Physiological and Environmental Causes of Freezing Injury in Red Spruce

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 139))

Abstract

For many, concerns about the implications of “environmental change” conjure up scenarios of forest responses to global warming, enrichment of greenhouse gases, such as carbon dioxide and methane, and the northward migration of maladapted forests. From that perspective, the primary focus of this chapter, that is, causes of freezing injury to red spruce (Picea rubens Sarg.), may seem somewhat counterintuitive and inconsistent with the overall theme of the book. However, the dramatically increased incidence of freezing injury to northern montane red spruce forests over the past four decades is, in fact, largely a function of human-induced environmental change. “Environmental change” in the context of this chapter includes both changing climatic patterns and chemical changes in the atmospheric, forest canopy, and/or soil environment that may directly or indirectly result from atmospheric wet (precipitation or cloud water) or dry (direct deposition of gases or aerosols) deposition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Magill A, McNulty SG, Boone RD, Nadelhoffer KJ, Downs M, Hallet R (1995) Forest biogeochemistry and primary production altered by nitrogen saturation. Water Air Soil Pollut 85:1665–1670.

    Article  CAS  Google Scholar 

  • Adams GT, Perkins TD (1993) Assessing cold tolerance in Picea using chlorophyll fluorescence. Environ Exp Bot 33:377–382.

    Article  CAS  Google Scholar 

  • Adams GT, Perkins TD, Klein RM (1991) Anatomical studies on first-year winter injured red spruce foliage. Am J Bot 78:1199–1206.

    Article  Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Borer CH, DeHayes DH, Schaberg PG, Cumming JR (1997) Relative quantification of membrane-associated calcium (mCa) in red spruce mesophyll cells. Trees 12:21–26.

    Article  Google Scholar 

  • Boyce RL (1995) Patterns of foliar injury to red spruce on Whiteface Mountain, New York, during a high-injury winter. Can J For Res 25:166–169.

    Article  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North America. Vol. 1. Conifers. Agric Handbook 654. United States Department of Agriculture (USDA) Forest Service, Washington, DC.

    Google Scholar 

  • Campagna MA, Margolis HA (1989) Influence of short-term atmospheric CO2 enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of development. Can J For Res 19:773–782.

    Article  Google Scholar 

  • Cape JN et al. (1991) Sulphate and ammonium in mist impair the frost hardiness of red spruce seedlings. New Phytol 125:119–126.

    Article  Google Scholar 

  • Crotty CM, Poole RJ (1995) Activation of an outward rectifying current by low temperature in alfalfa protoplasts. Plant Physiol 108:38.

    Google Scholar 

  • Dalen LS, Johnsen O, Ogner G. (1977) Frost hardiness development in young Picea abies seedlings under simulated autumn conditions in a phytotron—effects of elevated CO2, nitrogen and provenance. Plant Physiol 114:126.

    Google Scholar 

  • Davies HW, Monk-Talbot LS (1990) Permeability characteristics and membrane lipid composition of potato tuber cultivars in relation to Ca2+ deficiency. Phytochem 29:2833–2835.

    Article  CAS  Google Scholar 

  • DeHayes DH (1992) Winter injury and developmental cold tolerance in red spruce. In: Eager C, Adams MB (eds) The Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 296–337.

    Google Scholar 

  • DeHayes DH, Hawley GJ (1992) Genetic implications in the decline of red spruce. Water Air Soil Pollut 62:233–248.

    Article  CAS  Google Scholar 

  • DeHayes DH, Williams MW (1989) Critical Temperature: A Quantitative Method of Assessing Cold Tolerance. Gen Tech Rep NE-134. United States Department of Argiculture (USDA) Forest Service, Northeastern Forest Experiment Station, Broomall, PA.

    Google Scholar 

  • DeHayes DH, Ingle MA, Waite CE (1989) Nitrogen fertilization enhances cold tolerance of red spruce seedlings. Can J For Res 19:1037–1043.

    Article  Google Scholar 

  • DeHayes DH, Waite CE, Ingle MA, Williams MW (1990) Winter injury susceptibility and cold tolerance of current and year-old needles of red spruce trees from several provenances. For Sci 36:982–994

    Google Scholar 

  • DeHayes DH, Thornton FC, Waite CE, Ingle MA (1991) Ambient cloud deposition reduces cold tolerance of red spruce seedlings. Can For Res 21:1292–1295.

    Article  CAS  Google Scholar 

  • DeHayes DH, Schaberg PG, Hawley GJ, Borer CH, Cumming JR, Strimbeck GR (1997) Physiological implications of seasonal variation in membrane-associated calcium in red spruce mesophyll cells. Tree Physiol 17:687–695.

    Article  PubMed  CAS  Google Scholar 

  • DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR (1999) Acid rain impacts calcium nutrition and forest health. BioScience 49:789–800.

    Article  Google Scholar 

  • DeYoe DR, Brown GN (1979) Glycerolipid and fatty acid changes in eastern white pine chloroplast lamellae during the onset of winter. Plant Physiol 64:924–929.

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Monroy A, Wolfraim L, Dong G (1993) Signal transduction and gene expression during cold acclimation in alfalfa. In: Li PH, Christers-son L (eds) Advances in Plant Cold Hardiness. CRC Press, Boca Raton, FL, pp 57–72.

    Google Scholar 

  • Federer CA, Hornbeck JW, Tritton LM, Martin CW, Pierce RS, Smith CT (1989) Long-term depletion of calcium and other nutrients in eastern US forests. Environ Manage 13:593–601.

    Article  Google Scholar 

  • Fink S (1991) The micromorphological distribution of bound calcium in needles of Norway spruce (Picea abies [L.] Karst.). New Phytol 119:33–40.

    Article  CAS  Google Scholar 

  • Fincher J, Cumming JR, Alscher RG, Rubin G, Weinstein L (1989) Long-term ozone exposure affects winter hardiness of red spruce (Picea rubens Sarg.) seedlings. New Phytol 113:85–96.

    Article  CAS  Google Scholar 

  • Fowler D, Cape JN, Deans JD, Leith ID, Murray MB, Smith RI, Sheppard LJ, Unsworth MH (1989) Effects of acid mist on the frost hardiness of red spruce seedlings. New Phytol 113:321–335.

    Article  CAS  Google Scholar 

  • Friedland AJ, Gregory RA, Karenlampi L, Johnson AH (1984) Winter damage to foliage as a factor in red spruce decline. Can J For Res 14:963–965.

    Article  Google Scholar 

  • Grusak MA, Minchin PEH (1989) Cold-inhibited phloem translocation in sugar beet. J Exp Bot 40:215–223.

    Article  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Ann Rev Plant Physiol Plant Mol Biol 41:187–223.

    Article  CAS  Google Scholar 

  • Hadley JL, Amundson RG (1992) Effects of radiational heating at low air temperature on water balance, cold tolerance, and visible injury of red spruce foliage. Tree Physiol 11:1–17.

    PubMed  Google Scholar 

  • Hadley JL, Amundson RG, Laurence JA, Kohut RJ (1993) Physiological response to controlled freezing of attached red spruce branches. Environ Exper Bot 33:591–609.

    Article  Google Scholar 

  • Hadley JL, Friedland AJ, Herrick GT, Amundson RG (1991) Winter desiccation and solar radiation in relation to red spruce decline in the northern Appalachians. Can J For Res 21:269–272.

    Article  Google Scholar 

  • Hadley JL, Manter D, Herrick J (1996) The effects of post-freezing environment on freezing injury to red spruce: implications for cold tolerance testing in conifers. In: Bernier PY (ed) Proceedings of the 14th North American Forest Biology Workshop. 16-20 June, Laval University, Quebec City, Canada. p 106.

    Google Scholar 

  • Hamburg SP, Cogbill CV (1988) Historical decline of red spruce populations and climatic warming. Nature 331:428–430.

    Article  Google Scholar 

  • Hanninen H (1991) Does climatic warming increase the risk of frost damage in northern trees? Plant Cell Environ 14:449–454.

    Article  Google Scholar 

  • Hawkins BJ, Davradou M, Pier D, Shortt R (1995) Frost hardiness and winter photosynthesis of Thuja plicata and Pseudotsuga menziesii seedlings grown at three rates of nitrogen and phosphorus supply. Can J For Res 25:18–28.

    Article  Google Scholar 

  • Hawley GJ, DeHayes DH (1994) Genetic diversity and population structure of red spruce (Picea rubens). Can J Bot 72:1778–1786.

    Article  Google Scholar 

  • Hedin LO, Granat L, Likens GE, Bulshand TA, Galloway JN, Butler TJ, Rodhe H (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367:351–354.

    Article  CAS  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36:397–439.

    Article  CAS  Google Scholar 

  • Jacobson JS, Heller LI, L’Hirondelle SJ, Lassoie JP (1992) Phenology and cold tolerance of red spruce (Picea rubens Sarg.) seedlings exposed to sulfuric and nitric acid mist. Scand J For Res 7:331–344.

    Article  Google Scholar 

  • Johnson AH, Cook ER, Siccama TG (1988) Climate and red spruce growth and decline in the northern Appalachians. Proc Natl Acad Sci USA 85:5369–5373.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AH, DeHayes DH, Siccama TG (1996) Role of acid deposition in the decline of red spruce (Picea rubens Sarg.) in the montane forests of Northeastern USA. In: Raychudhuri SP, Maramorosch K (eds) Forest Trees and Palms: Disease and Control. Oxford and IBH, New Delhi, India, pp 49–71.

    Google Scholar 

  • Johnson AH, Friedland AJ, Dushoff JG (1986) Recent and historic red spruce mortality: evidence of climatic influence. Water Air Soil Pollut 30:319–330.

    Article  Google Scholar 

  • Johnson DW, Fernandez IJ (1992) Soil mediated effects of atmospheric deposition on eastern U.S. spruce-fir forests. In: Eager C, Adams MB (eds) The Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 235–270.

    Google Scholar 

  • Joslin JD, Wolfe MH (1988) Response of red spruce seedlings to changes in soil aluminum in six amended forest soil horizons. Can J For Res 18:1614–1623.

    Article  CAS  Google Scholar 

  • Joslin JD, Wolfe MH (1992) Red spruce soil solution chemistry and root distribution across a cloud water deposition gradient. Can J For Res 22: 893–904.

    Article  CAS  Google Scholar 

  • Joslin JD, McDuffie C, Brewer PF (1988) Acidic cloud water and cation loss from red spruce foliage. Water Air Soil Pollut 39:355–363.

    CAS  Google Scholar 

  • Kellomaki S, Hanninen H, Kolstrom M (1995) Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecol Applications 5:42–52.

    Article  Google Scholar 

  • Klein RM, Perkins TD, Myers HL (1989) Nutrient status and winter hardiness of red spruce foliage. Can J For Res 19:754–758.

    Article  Google Scholar 

  • Krauchi N (1993) Potential impacts of a climate change on forest ecosystems. Eur J For Path 23:28–50.

    Article  Google Scholar 

  • Larcher W, Bauer H (1981) Ecological significance of resistance to low temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of Plant Physiology N.S. Vol 12A. Physiological Plant Ecology I. Springer, Berlin, Germany, pp 403–437.

    Google Scholar 

  • Lawrence GB, David MB, Shortle WC (1995) A new mechanism for calcium loss in forest-floor soils. Nature 378:162–165.

    Article  CAS  Google Scholar 

  • L’Hirondelle SJ, Jacobson JS, Lassoie JP (1992) Acid mist and nitrogen fertilization effects on growth, nitrate reductase activity, gas exchange, and frost hardiness of red spruce seedlings. New Phytol 121:611–622.

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246.

    Article  CAS  Google Scholar 

  • Lindberg SE, Lovett GM (1992) Deposition and forest canopy interactions of airborne sulfur: Results from the integrated forest study. Atmos Environ 26a: 1477–1492.

    CAS  Google Scholar 

  • Lorius C, Jouzel J, Raynaud D, Hansen J, LeTrent H (1990) The ice-core record: climate sensitivity and future greenhouse warming. Nature 347:7–12.

    Article  Google Scholar 

  • Lund AE, Livingston WH (1998) Freezing cycles enhance winter injury in Picea rubens. Tree Physiol 19:65–69.

    Article  Google Scholar 

  • MacCracken M, Cubasch U, Gates WL, Harvey LD, Hunt B, Katz R, Lorenz E, Manabe S, McAvaney B, McFarlane N, Meehl G, Meleshko V, Robock A, Stenchikov G, Stouffer R, Wang W-C, Washington W, Watts R, Zebiak S (1991) A Critical Appraisal of Model Simulations. In: Schlesinger MF (ed) Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations. Developments in Atmospheric Science 19. Elsevier, Amsterdam, The Netherlands, pp 583–591.

    Google Scholar 

  • Manter DK, Livingston WH (1996) Influence of thawing rate and fungal infection by Rhizosphaera kalkhoffii on freezing injury in red spruce (Picea rubens) needles. Can J For Res 26:918–927.

    Article  Google Scholar 

  • Margolis HA (1989) Influence of short-term atmospheric CO2 enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of development. Can J For Res 19:733–782.

    Google Scholar 

  • Margolis HA, Vezina L-P (1990) Atmospheric CO2 enrichment and the development of frost hardiness in containerized black spruce seedlings. Can J For Res 20:1392–1398.

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral Nutrition of Higher Plants. Academic Press, New York.

    Google Scholar 

  • McLaughlin JW, Fernandez IJ, Richards KJ (1996) Atmospheric deposition to a low-elevation spruce-fir forest, Maine, USA. J Environ Qual 25: 248–259.

    Article  CAS  Google Scholar 

  • McLaughlin SB, Kohut RJ (1992) The effects of atmospheric deposition and ozone on carbon allocation and associated physiological processes in red spruce. In: Eager C, Adams MB (eds) The Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 338–382.

    Google Scholar 

  • McLaughlin SB, Tjoelker MG, Roy WK (1993) Acid deposition alters red spruce physiology: laboratory studies support field observations. Can J For Res 23: 380–386.

    Article  CAS  Google Scholar 

  • McLaughlin SB, Anderson CP, Hanson PJ, Tjoelker MG, Roy WK (1991) Increased dark respiration and calcium deficiency of red spruce in relation to acidic deposition at high-elevation southern Appalachian Mountain sites. Can J For Res 21:1234–1244.

    Article  CAS  Google Scholar 

  • McNulty SG, Aber JD, Newman SD (1996) Nitrogen saturation in a high elevation New England spruce-fir stand. For Ecol Manage 84:109–121.

    Article  Google Scholar 

  • Mohnen VA (1992) Atmospheric deposition and pollutant exposure of eastern U.S. forests. In: Eager C, Adams MB (eds) The Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 64–124.

    Google Scholar 

  • Monroy AF, Sarban F, Dhinza RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation and gene expression: evidence for a role of calcium. Plant Physiol 102:1227–1235.

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern EK (1969) Winter drying of red spruce provenances related to introgressive hybridization with black spruce. Bi-month Res Notes. Can For Serv 25:34–36.

    Google Scholar 

  • Palta JP, Levitt J, Stadlemann EJ (1977) Freezing injury in onion bulb cells. Plant Physiol 60:393–397.

    Article  PubMed  CAS  Google Scholar 

  • Palta JP, Li PH (1978) Cell membrane properties in relation to freezing injury. In: Li PH, Sakai A (eds) Plant Cold Hardiness and Freezing Stress. Academic Press, London, England, pp 93–115.

    Google Scholar 

  • Peart DR, Jones MB, Palmiotto PA (1991) Winter injury to red spruce at Mt. Moosilauke, NH. Can J For Res 21:1380–1389.

    Article  Google Scholar 

  • Perkins TD, Adams GT (1995) Rapid freezing induces winter injury symptomatology in red spruce foliage. Tree Physiol 15:259–266.

    PubMed  Google Scholar 

  • Perkins TD, Adams GT, Klein RM (1991) Desiccation or freezing? Mechanisms of winter injury to red spruce foliage. Am J Bot 78:1207–1217.

    Article  Google Scholar 

  • Perkins TD, Adams GT, Lawson S, Hemmerlein MT (1993) Cold tolerance and water content of current-year red spruce foliage over two winter seasons. Tree Physiol 13:119–129.

    PubMed  Google Scholar 

  • Perkins TD, Adams GT, Lawson ST, Schaberg PG, McNulty SG (2000) Long-term nitrogen fertilization increases winter injury in montane red spruce (Picea rubens) foliage. J Sustain For 10:200–205.

    Google Scholar 

  • Pomeroy MK, Andrews CJ (1985) Effects of low temperature and calcium on survival and membrane properties of isolated winter wheat cells. Plant Physiol 78:484–488.

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan V (1988) The greenhouse theory of climate change: a test by an inadvertent global experiment. Science 240:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost Survival of Plants. Responses and Adaptation to Freezing Stress. Springer-Verlag, New York.

    Google Scholar 

  • Schaberg PG, Shane JB, Hawley GJ, Strimbeck GR, DeHayes DH, Cali PF, Donnelly JR (1996) Physiological changes in red spruce seedlings during a simulated winter thaw. Tree Physiol 16:567–574.

    Article  PubMed  Google Scholar 

  • Schaberg PG, DeHayes DH, Hawley GJ, Strimbeck GR, Murakami PF, Cumming JR, Borer CH (2000a) Acid mist, soil Ca and Al treatments alter the mineral nutrition and physiology of red spruce. Tree Physiol 20: 101–106.

    Google Scholar 

  • Schaberg PG, Strimbeck GR, Hawley GJ, DeHayes DH, Shane JB, Murakami PF, PerkinsTD, Donnelly JR, Wong BL (2000b) Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates. J Sustain For 10:225–230.

    Google Scholar 

  • Schaberg PG, Perkins TD, McNulty SG (1997) Effects of chronic low-level N additions on foliar elemental concentrations, morphology, and gas exchange of mature montane red spruce. Can J For Res 27:1622–1629.

    Article  CAS  Google Scholar 

  • Schaberg PG, Shane JB, Cali PF, Donnelly JR, Strimbeck GR (1998) Photosyn-thetic capacity of red spruce during winter. Tree Physiol 18:271–276.

    Article  PubMed  Google Scholar 

  • Schaberg PG, Wilkinson RC, Shane JB, Donnelly JR, Cali PF (1995) Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiol 15:345–350.

    PubMed  Google Scholar 

  • Senser M, Beck E (1982) Frost resistance in spruce (Picea abies [L.] Karst.). V. Influence of photoperiod and temperature on the membrane lipids of needles. Z Pflanzenphysiol B 108:71–85.

    CAS  Google Scholar 

  • Senser M, Beck E (1984) Correlation of chloroplast ultrastructure and membrane lipid composition to the different degrees of frost resistance achieved in leaves of spinach, ivy, and spruce. J Plant Physiol 117:41–55.

    Article  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard LJ (1994) Causal mechanisms by which sulphate, nitrate and acidity influence frost hardiness in red spruce: review and hypothesis. New Phytol 127:69–82.

    Article  CAS  Google Scholar 

  • Sheppard LJ, Cape JN, Leith ID (1993) Acid mist affects dehardening, budburst, and shoot growth in red spruce. For Sci 39:680–691.

    Google Scholar 

  • Sheppard LJ, Smith RI, Cannell MGR (1989) Frost hardiness of Picea rubens growing in spruce decline regions of the Appalachians. Tree Physiol 5:25–37.

    PubMed  Google Scholar 

  • Shortle WC, Smith KT (1988) Aluminum-induced calcium deficiency syndrome in declining red spruce. Science 240:1017–1018.

    Article  PubMed  CAS  Google Scholar 

  • Snyder MC (1990) Seasonal patterns of carbohydrate reserves within red spruce seedlings in the Green Mountains of Vermont. Masters thesis, University of Vermont, Burlington, VT.

    Google Scholar 

  • Steponkus PL (1990) Cold acclimation and freezing injury from a perspective of the plasma membrane. In: Katterman F (ed) Environmental Injury to Plants. Academic Press, New York, pp 1–16.

    Google Scholar 

  • Strimbeck GR (1997) Cold tolerance and winter injury of montane red spruce. Ph.D. Dissertation, University of Vermont, Burlington, VT.

    Google Scholar 

  • Strimbeck GR, Johnson AH, Vann DR (1993) Midwinter needle temperature and winter injury of montane red spruce. Tree Physiol 13:131–144.

    PubMed  Google Scholar 

  • Strimbeck GR, Schaberg PG, DeHayes DH, Shane JB, Hawley GJ (1995) Midwinter dehardening of montane red spruce foliage during a natural thaw. Can J For Res 25:2040–2044.

    Article  Google Scholar 

  • Strimbeck GR, Vann DR, Johnson AH (1991) In situ experimental freezing produces symptoms of winter injury in red spruce foliage. Tree Physiol 9: 359–367.

    PubMed  Google Scholar 

  • Thornton FC, Pier PA, McDuffie C (1990) Response of growth, photosynthesis, and mineral nutrition of red spruce seedlings to O3 and acidic cloud deposition. Environ Exp Bot 30:313–323.

    Article  CAS  Google Scholar 

  • Tobi DR, Wargo PM, Bergdahl DR (1995) Growth response of red spruce after known periods of winter injury. Can J For Res 25:669–681.

    Article  Google Scholar 

  • Vann DR, Strimbeck GR, Johnson AH (1992) Effects of ambient levels of airborne chemicals on freezing resistance of red spruce foliage. For Ecol Manage 51:69–79.

    Article  Google Scholar 

  • Waite CE, DeHayes DH, Rebbeck J, Schier GA, Johnson AH (1994) The influence of elevated ozone on freezing tolerance of red spruce seedlings. New Phytol 126:327–335.

    Article  CAS  Google Scholar 

  • Wareing PF, Phillips IDJ (1981) Growth and Differentiation in Plants. Pergamon, New York.

    Google Scholar 

  • White GJ (1996) Effects of chronic ammonium sulfate treatments on forest trees at the Bear Brook Watershed in Maine. Ph.D. Dissertation, University of Maine, Orno, ME.

    Google Scholar 

  • White PS, Cogbill CV (1992) Spruce-fir forests of Eastern North America. In: Eager C, Adams MB (eds) The Ecology and Decline of Red Spruce in the Eastern United States. Springer-Verlag, New York, pp 3–39.

    Google Scholar 

  • Wilkinson RC (1990) Effects of winter injury on basal area and height growth of 30-year-old red spruce from 12 provenances growing in northern New Hampshire. Can J For Res 20:1616–1622.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schaberg, P.G., DeHayes, D.H. (2000). Physiological and Environmental Causes of Freezing Injury in Red Spruce. In: Mickler, R.A., Birdsey, R.A., Hom, J. (eds) Responses of Northern U.S. Forests to Environmental Change. Ecological Studies, vol 139. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1256-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1256-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7064-5

  • Online ISBN: 978-1-4612-1256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics