Skip to main content

The Large-N c Renormalization Group

  • Conference paper
Solitons

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 368 Accesses

Abstract

In this chapter1, we review how effective theories of mesons and baryons become exactly soluble in the large-N c limit. We start with a generic hadron Lagrangian constrained only by certain well-known large-N c selection rules. The bare vertices of the theory are dressed by an infinite class of UV divergent Feynman diagrams at leading order in l/N c . We show how all these leading-order diagrams can be summed exactly using semiclassical techniques. The saddle-point field configuration is reminiscent of the chiral bag: hedgehog pions outside a sphere of radius Λ−1 (Λ being the UV cutoff of the effective theory) matched onto nucleon degrees of freedom for r ≤ Λ−1. The effect of this pion cloud is to renormalize the bare nucleon mass, nucleon-Δ hyperfine mass splitting, and Yukawa couplings of the theory. The corresponding large-N c renormalization group equations for these parameters are presented, and solved explicitly in a series of simple models. We explain under what conditions the Skyrmion emerges as a UV fixed-point of the RG flow as Λ → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Adkins, C. Nappi, and E. Witten, Nuclear Phys. B 228 (1983), 552.

    Article  ADS  Google Scholar 

  2. P. Arnold and M. P. Mattis, Phys. Rev. Lett. 65 (1989), 8311.

    Google Scholar 

  3. C. Carone, H. Georgi, L. Kaplan, and D. Morin, Phys. Rev. D 50 (1994), 5793; C. Carone, H. Georgi, and S. Osofsky, Phys. Lett. B 322 (1994), 227.

    ADS  Google Scholar 

  4. R. Dashen and A. V. Manohar, Phys. Lett. B 315 (1993), 425 and 438; R. Dashen, E. Jenkins, and A. V. Manohar, Phys. Rev. D 49 (1994), 4713; E. Jenkins and A. V. Manohar, Phys. Lett. B 335 (1994), 452.

    Google Scholar 

  5. G. H. Derrick, J. Math. Phys. 5 (1964), 1252; R. Hobart, Proc. Roy. Soc. London Ser. A 82 (1963), 201.

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Dorey, J. Hughes, and M. P. Mattis, Phys. Rev. D 50 (1994), 5816.

    ADS  Google Scholar 

  7. N. Dorey, J. Hughes, and M. P. Mattis, Phys. Rev. Lett. 73 (1994), 1211.

    Article  ADS  Google Scholar 

  8. N. Dorey, J. Hughes, and M. Mattis, Phys. Rev. D 50 (1994), 5816.

    ADS  Google Scholar 

  9. N. Dorey and M. P. Mattis, Phys. Rev. D 52 (1995), 2891.

    ADS  Google Scholar 

  10. J. Gervais and B. Sakita, Phys. Rev. D 30 (1984), 1795.

    ADS  Google Scholar 

  11. G. ’t Hooft, Nuclear Phys. B 72 (1974), 461; Nuclear Phys. B 75 (1974), 461; G. Veneziano, Nuclear Phys. B 117 (1976), 519.

    Article  ADS  Google Scholar 

  12. E. Jenkins, Phys. Lett. B 315 (1993), 441.

    Google Scholar 

  13. M. A. Luty and J. March-Russell, Nuclear Phys. B 426 (1994), 71; M. A. Luty, hep-ph/9405271.

    Article  ADS  Google Scholar 

  14. A. V. Manohar, Phys. Lett. B 336 (1994), 502.

    Google Scholar 

  15. A. V. Manohar, Nuclear Phys. B 248 (1984), 19.

    Article  ADS  Google Scholar 

  16. M. P. Mattis, Phys. Rev. D 39 (1989), 994; Phys. Rev. Lett. 63 (1989), 1455.

    ADS  Google Scholar 

  17. M. P. Mattis and E. Braaten, Phys. Rev. D 39 (1989), 2737.

    ADS  Google Scholar 

  18. M. P. Mattis and M. Mukerjee, Phys. Rev. Lett. 61 (1988), 1344.

    Article  ADS  Google Scholar 

  19. M. Rho, A. S. Goldhaber, and G. E. Brown, Phys. Rev. Lett. 51 (1983), 747; J. Goldstone and R. L. Jaffe, Phys. Rev. Lett. 51 (1983), 1518; An excellent recent review of chiral bags is M. Rho, Phys. Rep. 240 (1994), 1.

    Article  ADS  Google Scholar 

  20. L. S. Schulman, Phys. Rev. 176 (1968), 1558.

    Article  MathSciNet  ADS  Google Scholar 

  21. T. H. R. Skyrme, Proc. Roy. Soc. Ser. A 260 (1961), 127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E. Witten, Nuclear Phys. B 160 (1979), 57.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Dorey, N., Mattis, M.P. (2000). The Large-N c Renormalization Group. In: MacKenzie, R., Paranjape, M.B., Zakrzewski, W.J. (eds) Solitons. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1254-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1254-6_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7063-8

  • Online ISBN: 978-1-4612-1254-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics