Skip to main content

Gravity Waves on the Surface of the Sphere

  • Conference paper
Mechanics: From Theory to Computation
  • 393 Accesses

Summary

We propose a Hamiltonian model for gravity waves on the surface of a fluid layer surrounding a gravitating sphere. The general equations of motion are nonlocal and can be used as a starting point for simpler models, which can be derived systematically by expanding the Hamiltonian in dimensionless parameters. In this paper, we focus on the small wave amplitude regime. The first-order nonlinear terms can be eliminated by a formal canonical transformation. Similarly, many of the second order terms can be eliminated. The resulting model has the feature that it leaves invariant several finite-dimensional subspaces on which the motion is integrable.

Communicated by Jerrold Marsden and Stephen Wiggins

This paper is dedicated to the memory of Juan-Carlos Simo

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.B. Benjamin, P.J. Olver: Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech., 83, 137–185 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. C. Biedenharn, J. D. Louck: Angular momentum in quantum physics—theory and applications, Addison-Wesley, Reading, Mass. (1981).

    Google Scholar 

  3. J. R. Cary: Lie transform perturbation theory for Hamiltonian systems, Phys. Reports, 79, No. 2, 129 – 159 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. R. Coifman, Y. Meyer: Non-linear harmonic analysis and analytic dependence, AMS Proc. Symp. Pure Math., 43, 71 – 78 (1985).

    MathSciNet  Google Scholar 

  5. W. Craig, M. D. Groves: Hamiltonian long-wave scaling limits of the water wave problem, preprint (1992).

    Google Scholar 

  6. W. Craig, C. Sulem: Numerical simulation of gravity waves, J. Comp. Phys., 108, 73 – 83 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A. J. Dragt, J. M. Finn: Lie series and invariant functions for analytic symplectic maps, J. Math. Phys., 17, 2215 – 2227 (1976).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. B. A. Dubrovin: Geometry of Hamiltonian evolutionary systems, Bibliopolis, Napoli (1991).

    MATH  Google Scholar 

  9. Z. C. Feng, P. R. Sethna: Symmetry breaking and bifurcations in resonant surface waves, J. Fluid Mech., 199, 495–518 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Glozman, Y. Agnon, M. Stiassnie: High order formulation of the water wave problem, Physica D, 66, 347 – 367 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. L. D. Landau, A. Lifschitz: Fluid Mechanics, Pergamon, Oxford (1959).

    Google Scholar 

  12. H. Lamb: Hydrodynamics, Dover, New York (1932).

    MATH  Google Scholar 

  13. D. Lewis, J. Marsden, R. Montgomery, T. Ratiu: The Hamiltonian structure for dynamic free boundary problems, Physica D, 18, 391 – 404 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. J. W. Miles: On Hamilton’s principle for surface waves, J. Fluid Mech., 83, 153 – 158 (1977).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. J. Moser: Periodic orbits near an equilibrium and a theorem of Alan Weinstein, Commun. Pure Appl. Math., 29, 727 – 747 (1976).

    Article  ADS  MATH  Google Scholar 

  16. P. M. Morrison, J. M. Greene: Non-canonical Hamiltonian density formulation of hydrodynamics and ideal magneto-hydrodynamics, Phys. Rev Let., 45, 790 – 794 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Marsden, A. Weinstein: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Physica D, 7, 305 – 323 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. M. MacRoberts: Spherical harmonics, Pergamon Press, London, (1967).

    Google Scholar 

  19. G. W. Platzman: Ocean tides and related waves, in Mathematical Problems in the Geophysical Sciences I, ed. W. H. Reid, 239–291 (1970).

    Google Scholar 

  20. A. Weinstein: Normal modes for non-linear Hamiltonian systems, Inv. Math., 20, 47 – 57 (1973).

    Article  ADS  MATH  Google Scholar 

  21. G. B. Whitham: Linear and Nonlinear Waves, Wiley Interscience, New York (1974).

    MATH  Google Scholar 

  22. V. E. Zakharov: Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Tech. Phys., 2, 190 – 194 (1968).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

de la Llave, R., Panayotaros, P. (2000). Gravity Waves on the Surface of the Sphere. In: Mechanics: From Theory to Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1246-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1246-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7059-1

  • Online ISBN: 978-1-4612-1246-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics