Skip to main content

Stable Isotope Tracers and Mathematical Models in Soil Organic Matter Studies

  • Chapter
Methods in Ecosystem Science

Abstract

Light stable isotopes have become widely used bio-geochemical tracers in earth science and ecology research during the last half of this century. With some exceptions, these applications have originated as a result of pioneering geochemical research at the University of Chicago and the California Institute of Technology in the 1950s and 1960s (Taylor et al. 1991). The breadth of isotopic tracer studies in present-day ecosystem sciences is now so great that it eludes even the most ambitious review article or book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, S.H.; Sikes, N.E. Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science 252:1402–1405; 1991.

    Article  Google Scholar 

  • Amundson, R.; Chadwick, O.A.; Sowers, J.M.; Doner, H.E. Soil evolution along an altitudinal transect in the eastern Mojave Desert of Nevada, U.S.A. Geoderma 43:349–371; 1989.

    Article  Google Scholar 

  • Amundson, R.; Stern, L.; Baisden, T.; Wang, Y. The isotopic composition of soil and soil-respired CO2. Geoderma 82:83–114, 1998.

    Article  Google Scholar 

  • Arrouays, D.; Balesdent, J.; Mariotti, A.; Girardin, C. Modeling organic carbon turnover in cleared temperate forest soils coverted to maize cropping by using 13C natural abundance measurements. Plant Soil 173:191–196; 1995.

    Article  CAS  Google Scholar 

  • Austin, A.T.; Vitousek. P.M. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113:519–529; 1998.

    Article  Google Scholar 

  • Baisden, W.T.; Amundson. R.G. Matrix methods to model terrestrial ecosystem C and N dynamics. Suppl. Bull. Ecol. Soc. Am. 1997 Annu. Meet. 78(4):218; 1997.

    Google Scholar 

  • Balesdent, J.; Girardin, C.; Mariotti, A. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713–1721; 1993.

    Article  Google Scholar 

  • Balesdent, J.; Mariotti, A. Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton, T.; Yamasaki, S., eds. Mass Spectrometry of Soils. Marcel Dekker, New York; 1996:83–111.

    Google Scholar 

  • Balesdent, J.; Wagner, G.H.; Mariotti, A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 52:118–124; 1988.

    Article  CAS  Google Scholar 

  • Bender, M.M. Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon 10:468–472; 1968.

    Google Scholar 

  • Benner, R.; Fogel, M.L.; Sprague, E.K.; Hodson, R.E. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–710; 1987.

    Article  CAS  Google Scholar 

  • Bertram, H.-G.; Schleser, G.H. The 13C/12C isotope ratios in a north-German podzol. In: Schmidt, H.-L.; Förstel, H.; K. Heinzinger, K., eds. Stable Isotopes. Amsterdam: Elsevier; 1982:115–120.

    Google Scholar 

  • Bird, M.I.; Chivas, A.R.; Head, J. A latitudinal gradient in carbon turnover times in forest soils. Nature 381:143–146; 1996.

    Article  CAS  Google Scholar 

  • Blackmer, A.M.; Bremner, J.M. Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biol. Biochem. 9:73–77; 1977.

    Article  CAS  Google Scholar 

  • Boutton, T.W. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In: Boutton, T.; Yamasaki, S, eds. Mass Spectrometry of Soils. New York: Marcel Decker; 1996:47–82.

    Google Scholar 

  • Bray, J.R. Root production and the estimation of net productivity. Can. J. Bot. 41:65–72; 1963.

    Article  Google Scholar 

  • Bremner, J.M. Isotope-ratio analysis of nitrogen in nitrogen-15 tracer investigations. In: Black, C.A.; Evans, D.D.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C., eds. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Madison, WI: American Society of Agronomy; 1965:1256–1286.

    Google Scholar 

  • Bryan, B.A.; Shearer, G.; Skeeters, J.; Kohl, D.H. Variable expression of the nitrogen isotope effect associated with denitrification of nitrate. J. Biol. Chem. 258:8613–8617; 1983.

    PubMed  CAS  Google Scholar 

  • Cerling, T.E.; Solomon, D.K.; Quade, J.; Bowman, J.R. On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3404–3405; 1991.

    Article  Google Scholar 

  • Chien, S.H.; Shearer, G.; Kohl, D.H. The nitrogen isotope effect associated with nitrate and nitrite loss from waterlogged soils. Soil Sci. Soc. Am. J. 41:63–69; 1977.

    Article  CAS  Google Scholar 

  • Cook, F.D.; Wellman, R.P.; Krouse, H.R. Nitrogen isotope fractionation in the nitrogen cycle. In: E. Ingersen, E., ed. Proceedings of Symposium on Hydrogeo-chemistry and Bio geochemistry. Vol. 2. Washington, DC: Clark; 1973:49–64.

    Google Scholar 

  • Connin, S.L.; Virginia, R.A.; Chamberlain, C.P. Carbon isotopes reveal soil organic matter dynamics following arid shrub expansion. Oecologia 110:374–386; 1997.

    Article  Google Scholar 

  • Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analyses of carbon dioxide. Geochim Cosmochim Acta 12:133–149; 1957.

    Article  CAS  Google Scholar 

  • Darwin, C. The Formation of Vegetable Mould Through the Action of Worms, with Observations on Their Habits. London: John Murray; 1881.

    Google Scholar 

  • Delwiche, C.C.; Steyn, P.L. Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Tech. 4:929–935; 1970.

    Article  CAS  Google Scholar 

  • Domenach, A.M.; Chalamet, A. Rapports isotopiques Naturels de l’axote. I. Premiers resultats. Sols des Dombes. Rev. Ecol. Biol. Sol. 14:279–287; 1977.

    CAS  Google Scholar 

  • Dörr, H.; Münnich, K.O. Annual variations of the 14C content of soil CO2. Radiocarbon 28:338–345; 1986.

    Google Scholar 

  • Dörr, H.; Münnich, K.O. Downward movement of soil organic matter and its influence on trace-element transport (210Pb, 137Cs) in the soil. Radiocarbon 31:655–663; 1989.

    Google Scholar 

  • Dzurec, R.S.; Boutton, T.W.; Caldwell, M.M.; Smith, B.N. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah. Oecologia 66:17–24; 1985.

    Article  Google Scholar 

  • Elzein, A.; Balesdent, J. Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. Soil Sci. Soc. Am. J. 59:1328–1335; 1995.

    Article  CAS  Google Scholar 

  • Evans, R.D.; Ehleringer, J.R. A break in the nitrogen cycle in aridlands? Evidence from δ15N of soils. Oecologia 94:314–317; 1993.

    Article  Google Scholar 

  • Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:503–537; 1989.

    Article  CAS  Google Scholar 

  • Faure, G. Principles of Isotope Geology. 2nd Ed. New York: Wiley; 1986.

    Google Scholar 

  • Focht, D.D. Isotope fractionation of 15N and 14N in microbial transformations: a theoretical model. J. Environ. Qual. 2:247–252; 1973.

    Article  CAS  Google Scholar 

  • Freidli, H.; Lötscher, H.; Oeschger, H.; Seigenthaler, U.; Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238; 1986.

    Article  Google Scholar 

  • Freidman, I.; O’Neil, J.R. Chapter, KK. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer, M., ed. Data of Geochemistry. 6th Ed. United States Geological Survey (USGS) Professional Paper 440-KK. Washington, DC: U.S. Government Printing Office; 1977.

    Google Scholar 

  • Galloway, J.N.; Levy, H.; Kashibhatla, P.S. Year 2020— Consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23:120–123; 1994.

    Google Scholar 

  • Gile, L.; Grossman, R.B. The Desert Soil Project Monograph. Washington, DC: U.S. Department of Agriculture (USDA), Soil Conservation Service; 1979.

    Google Scholar 

  • Goreau, T.J.; Kaplan, W.A.; Wofsy, S.C.; McElroy, M.B.; Valios, F.W.; Watson, S.W. Production of and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40:526–532; 1980.

    PubMed  CAS  Google Scholar 

  • Hayes, J.M. Fractionation, et al. An introduction to isotopic measurements and terminology. Spectra 8:3–8; 1982.

    Google Scholar 

  • Heaton, T.H.E. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atm. Environ., 21:843–852; 1987a.

    Article  CAS  Google Scholar 

  • Heaton, T.H.E. The 15N/14N ratios of plants in South Africa and Namibia: Relationship to climate and coastal/ saline environments. Eocologia 74:236–246; 1987b.

    Google Scholar 

  • Hedges, J.I.; Mann, D.C. The lignin geochemistry of marine sediments from the southern Washington coast. Geochim Cosmochim Acta 43:1809–1818; 1979.

    Article  CAS  Google Scholar 

  • Jackson, L.; Strauss, R.; Firestone, M.; Bartolomne, J. Plant and soil nitrogen dynamics in California annual grassland. Plant Soil 110:9–17; 1988.

    Article  Google Scholar 

  • Jenny, H.; Gessel., S.P.; Bingham, F.T. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432; 1949.

    Article  CAS  Google Scholar 

  • Kinzig, A.P.; Socolow, R.H. Human impacts on the nitrogen cycle. Physics Today. November 1994:24–31; 1994.

    Article  Google Scholar 

  • Kononova, M.M. Soil Organic Matter. 2nd Ed. Oxford: Pergamon; 1966.

    Google Scholar 

  • Lauenroth, W.K.; Whitman, W.C. Dynamics of dry matter production in a mixed-grass prairie in western North Dakota. Oecologia 27:339–351; 1977.

    Article  Google Scholar 

  • Mariotti, A. Apports de al Geóchimie isotopiue a la connaissance du cycle de l’azote. Memoires des Sciences de la Terré. Universite P. et M. Cure Paris, No. 82-13; 1982.

    Google Scholar 

  • Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687; 1983.

    Article  CAS  Google Scholar 

  • Mariotti, A.; Germon, J.C.; Hubert, P.; Kaiser, P.; Letolle, R.; Tardieux, A.; Tardieux, P. Experimental determinations of nitrogen kinetic isotope fractionation: Some principles. Illustration for the denitrification and nitrification processes. Plant Soil 62:413–430; 1981.

    Article  CAS  Google Scholar 

  • Mariotti, A.; Mariotti, F.; Champigny, M.L.; Amarger, N.; Moyse, A. Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of by pearl millet. Plant Physiol 69:880–884; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Mariotti, A.; Pierre, D.; Vedy, J.C.; Brukert, S.; Guillemot, J. The abundance of natural nitrogen-15 in the organic matter of soils along an altitudinal gradient. Catena 7:292–300; 1980.

    Google Scholar 

  • Mary, B.; Mariotti, A.; Morel, J.L. Use of 13C variations at natural abundance for studying the biodegradation of root mucilage, roots, and glucose in soil. Soil Biol. Biochem. 24:1065–1072; 1992.

    Article  Google Scholar 

  • McKeague, J.A.; DeConinck, F.; Franzmeier, D.P. Spodosols. In: Wilding, L.P.; Smeck, N.E.; Hall, G.F., eds. Pedogenesis and Soil Taxonomy. II. The Soil Orders. Developments in Soil Science 11B. New York: Elsevier; 1983:217–252.

    Chapter  Google Scholar 

  • Melillo, J.M.; Aber, J.D.; Linkins, A.E.; Ricca, A.; Fry, B.; Nadelhoffer, K.J. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 115:189–198; 1989.

    Article  Google Scholar 

  • Miyake, Y.; Wada, E. The isotope effect on the nitrogen in biochemical oxidation-reduction reactions. Rec. Oceanogr. Works Jpn 11:1–6; 1971.

    CAS  Google Scholar 

  • Monaghan, M.C.; Krishnaswami, S.; Thomas, J.H. 10Be concentrations and the long-term fate of particle-reactive nuclides in five soil profiles from California. Earth Planet. Sci. Lett. 65:51–60; 1983.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K.J.; Fry, B. Controls on the natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil. Sci. Soc. Am. J. 52:1633–1640; 1988.

    Article  Google Scholar 

  • Oades, J.M. An overview of processes affecting the cycling of organic carbon in soils. In; Zepp, R.; Sontagg, C., eds. The Role of Nonliving Organic Matter in the Earth’s Carbon Cycle. New York: Wiley; 1995:293–304.

    Google Scholar 

  • O’Brien, J.B.; Stout, J.D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol. Biochem. 10:309–317; 1978.

    Article  Google Scholar 

  • Parker, P.L. The biogeochemistry of the stable isotopes in a marine bay. Geochim Cosmochim Acta 28:1155–1164; 1964.

    Article  CAS  Google Scholar 

  • Piccolo, M.C.; Neill, C.; Melillo, J.M.; Cerri, C.C.; Steudler, P.A. 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182:249–258; 1996.

    CAS  Google Scholar 

  • Riley, R.H.; Vitousek, P.M. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montaine rain forest. Ecology 76:292–304; 1995.

    Article  Google Scholar 

  • Robinson, D.; Scrimgeour, C.M. The contribution of plant C to soil CO2 measured using delta C-13. Soil Biol. Biochem. 27:1653–1656; 1995.

    Article  CAS  Google Scholar 

  • Rochette, P.; Flanagan, L.B. Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci. Soc. Am. J. 61:466–474; 1997.

    Article  CAS  Google Scholar 

  • Schlesinger, W.H. Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Syst. 8:51–81; 1977.

    Article  CAS  Google Scholar 

  • Schlesinger, W.H. Biogeochemistry. An Analysis of Global Change. New York: Academic; 1991.

    Google Scholar 

  • Shearer, G.; Duffy, J.; Kohl, D.H.; Commoner, B. A steady-state model of isotopic fractionation accompanying nitrogen fractionations in soil. Soil Sci. Soc. Am. Proc. 38:315–322; 1974.

    Article  CAS  Google Scholar 

  • Shearer, G.; Kohl, D.H. N2-fixation in field settings: Estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13:699–756; 1986.

    CAS  Google Scholar 

  • Shearer, G.; Kohl, D.H. Estimates of N2 fixation in ecosystems: The need for and basis of the 15N natural abundance method. In: Rundel, P.W.; Ehleringer, J.R.; Nagy, K.A., eds. Stable Isotopes in Ecological Research. New York: Springer-Verlag, 1988:342–374.

    Google Scholar 

  • Shearer, G.; Kohl, D.H.; Chein, S.H. The nitrogen-15 abundance in a wide variety of soil. Soil Sci. Soc. Am. J. 42:899–902; 1978.

    Article  CAS  Google Scholar 

  • Smith, B.N.; Epstein, S. Two categories of 13C/12C for higher plants. Plant Physiol. 47:380–384; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Stout, J.D.; Rafter, T.A. The 13C/12C isotopic ratios of some New Zealand tussock grassland soils. In: Robinson, B.W., ed. Stable Isotopes in the Earth Sciences. Wellington, New Zealand: Department of Scientific and Industrial Research; 1978:75–83.

    Google Scholar 

  • Taylor, H.P., Jr.; O’Neil, J.R.; Kaplan, I.R. Samuel Epstein: Scientist, teacher, and friend. In: Taylor, H.P., Jr.; O’Neil, J.R.; Kaplan, I.R., eds. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Special Publication No. 3. San Antonio, TX: The Geochemical Society, Trinity Univ.; 1991:xiii–xvi.

    Google Scholar 

  • Townsend, A.R.; Vitousek, P.M.; Trumbore, S.E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76:721–733; 1995.

    Article  Google Scholar 

  • Trumbore, S.E. Comparison of carbon dynamics in tropical and temperate soil using Radiocarbon measurements. Global Biogeochem. Cycl. 9:515–528; 1993.

    Article  Google Scholar 

  • Tsai, P.-T. Strontium 90 Translocation in Undisturbed Soil Profiles. M.S. thesis, University of Utah, Salt Lake City, UT; 1989.

    Google Scholar 

  • Uebersax, A. The Content and Stable Isotope Systematics of Carbon and Nitrogen in Soil Organic Matter from Elevation Transects in Hawaii (USA) and Mt. Kilimanjaro (Tanzania). M.S. thesis, University of California, Berkeley, CA; 1996.

    Google Scholar 

  • Vitousek, P.M.; Shearer, G.; Kohl, D.H. Foliar 15N natural abundance in Hawaiian rainforest: Patterns and possible mechanisms. Oecologia 78:383–388; 1989.

    Article  Google Scholar 

  • Volobuev, V.R. Ecology of Soils. Jerusalem: Israel Program for Scientific Translations; 1964.

    Google Scholar 

  • Vogt, K. Carbon budgets of temperate forest ecosystems. Tree Physiol. 9:69–86; 1991.

    PubMed  Google Scholar 

  • Wang, Y.; Amundson, R.; Trumbore, S.A. model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate. Geochim. Cosmochim. Acta 58:393–399; 1994.

    Article  CAS  Google Scholar 

  • Wang, Y.; Cerling, T.E.; Effland, W.R. Stable isotope ratios of soil carbonate and soil organic matter as indicators of forest invasion of prairie near Ames, Iowa. Oecologia 95:365–369; 1993.

    Article  Google Scholar 

  • Wedin, D.A.; Tieszen, L.L.; Dewey, B.; Pastor, J. Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76:1383–1392; 1995.

    Article  Google Scholar 

  • Wellman, R.P.; Cook, F.D.; Krouse, H.R. Nitrogen-15: Microbial alteration of abundance. Science 161:269–270; 1968.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amundson, R., Baisden, W.T. (2000). Stable Isotope Tracers and Mathematical Models in Soil Organic Matter Studies. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics