Ecosystem Modeling

  • Herman H. Shugart

Abstract

In the usual usage, ecological models are mathematical expressions developed to be analogous, in some sense, with an ecosystem of interest (Table 25.1). The models of principal interest here are those are used to integrate information and to produce predictions of responses of ecosystems to change. With an abruptly increasing availability of computer power in terms of speed, cost, and magnitude of computation over the past two decades, there has been an explosive development of the application of computer models in ecology as well as in other sciences. New computer software allows scientists to explore complex dynamic equations using small (but powerful) computers in the same manner that an earlier generation of ecologists used paper as “scratch pads” to sketch data patterns and dynamic interrelations. The mathematical techniques used in developing and analyzing ecological models have been treated in several books (e.g., Caswell et al. 1972; Smith 1974; Odum 1983; Jørgensen 1986; Beltrami 1987; Yodzis 1989; Shugart 1998) and are the focus of several ecological journals.

Keywords

Biomass Phosphorus Dioxide Depression Lignin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allee, W.C. Concerning the organization of marine coastal communities. Ecol. Monogr. 5:541–554; 1934.CrossRefGoogle Scholar
  2. Beltrami, E. Mathematics for Dynamic Modeling. Orlando, FL: Academic; 1987.Google Scholar
  3. Bormann, F.H.; Likens, G.E. Pattern and Process in a Forested Ecosystem. New York: Springer-Verlag; 1979.CrossRefGoogle Scholar
  4. Botkin, D.B. Forest Dynamics: An Ecological Model. Oxford: Oxford Univ. Pr.; 1993.Google Scholar
  5. Botkin, D.B.; Janak, J.F.; Wallis, J.R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60:849–872; 1972.CrossRefGoogle Scholar
  6. Box, E.O. Geographical dimensions of terrestrial net and gross primary productivity. Radiat. Environ. Biophys. 15:305–322; 1978.PubMedCrossRefGoogle Scholar
  7. Caswell, H.; Koenig, H.E.; Resh, J.A.; Ross, Q.E. An introduction to systems science for ecologists. In: Patten, B.C., ed. Systems Analysis and Simulation in Ecology. Vol. II. New York: Academic; 1972:3–80.Google Scholar
  8. Cook, R.E. Raymond Lindeman and the trophic-dynamic concept in ecology. Science 198:109–122; 1977.Google Scholar
  9. Dale, M.B. Systems analysis and ecology. Ecology 51:2–16; 1970.CrossRefGoogle Scholar
  10. DeAngelis, D.L.; Gross, L.J., eds. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems. New York: Chapman and Hall; 1992.Google Scholar
  11. DiStefano, J.J., III, Stubberud, A.R.; Williams, I.J. Schaum’s Outline of Theory and Problems of Feedback and Control Systems. New York: McGraw-Hill; 1967.Google Scholar
  12. Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 fixation in leaves of C3 species. Planta 149:78–90; 1980.CrossRefGoogle Scholar
  13. Friend, A.D. Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning. Plant Cell Environ. 14:895–905; 1991.CrossRefGoogle Scholar
  14. Friend, A.D.; Shugart, H.H.; Running, S.W. A physiology-based model of forest dynamics. Ecology 74:792–797; 1993.CrossRefGoogle Scholar
  15. Hearon, K.Z. The kinetics of linear systems with special reference to periodic reactions. Bull. Math. Biophys. 15:121–141; 1953.CrossRefGoogle Scholar
  16. Holling, C.S. Principles of insect predation. Annu. Rev. Entomol. 6:163–182; 1961.CrossRefGoogle Scholar
  17. Holling, C.S. The analysis of complex population processes. Can. Entomol. 96:335–347; 1964.CrossRefGoogle Scholar
  18. Huston, M.; DeAngelis, D.L.; Post, W.M. New computer models unify ecological theory. BioScience 38:682–691; 1988.CrossRefGoogle Scholar
  19. Jørgensen, S.E. Fundamentals of Ecological Modeling. Amsterdam; Elsevier; 1986.Google Scholar
  20. Levins, R. The quantitative analysis of partially specified systems. Ann. N.Y. Acad. Sci. 231:123–138; 1974.PubMedCrossRefGoogle Scholar
  21. Lieth, H. Modeling the primary productivity of the world (pp. 237-263). In: Leith, H.; Whittaker, R.H., eds. Primary Productivity of the Biosphere. New York: Springer-Verlag; 1975:237–263.CrossRefGoogle Scholar
  22. Lindeman, R.L. The trophic-dynamic aspect of ecology. Ecology 23:399–418.Google Scholar
  23. Lomnicki, A. Population Ecology of Individuals. Princeton, NJ: Princeton Univ. Pr.; 1988.Google Scholar
  24. Mankin, J.B.; O’Neill, R.V.; Shugart, H.H.; Rust, B.W. The importance of validation in ecosystem analysis. In: Innis, G.S., ed. New Directions in the Analysis of Ecological Systems. Part I. LaJolla, CA: Simulation Councils of America, 1977:63–71.Google Scholar
  25. McIntosh, R.P. The Background of Ecology: Concept and Theory. Cambridge: Cambridge Univ. Pr.; 1985.CrossRefGoogle Scholar
  26. Meentenmeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472; 1978.CrossRefGoogle Scholar
  27. Montieth, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9:747–766; 1972.CrossRefGoogle Scholar
  28. Odum, E.P. Fundamentals of Ecology. Philadelphia: Saunders; 1953.Google Scholar
  29. Odum, E.P. Energy flow in ecosystems: A historical review. Am. Zool. 8:11–18; 1968.Google Scholar
  30. Odum, H.T. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27:55–112; 1955.CrossRefGoogle Scholar
  31. Odum, H.T. Systems Ecology. New York: Wiley; 1983.Google Scholar
  32. Ojima, D., ed. Modeling the Earth System. Boulder, CO: UCAR/Office for Interdisciplinary Earth Studies; 1992.Google Scholar
  33. Parton, W.J. Abiotic section of ELM. In: Innis, G.S., ed. Grassland Simulation Model. Ecological Studies 26. New York: Springer-Verlag; 1978:31–53.CrossRefGoogle Scholar
  34. Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D. Analysis of factors controlling soil organic levels of grasslands of the Great Plains. Soil Sci. Soc. Am. J. 51:1173–1179; 1987.CrossRefGoogle Scholar
  35. Parton, W.J., Stewart, J.W.B.; and Cole, C.V. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 5:109–131; 1988.CrossRefGoogle Scholar
  36. Patten, B.C. A primer for ecological modeling and simulation with analog and digital computers. In: Patten, B.C.; ed. Systems Analysis and Simulation in Ecology. Vol. I. New York: Academic; 1971:4–121.Google Scholar
  37. Penman, H.L. Natural evaporation from open water, soil and grass. Proc. R. Soc. Lond. A 193:120–145; 1948.CrossRefGoogle Scholar
  38. Petersen, C.G.J. The Sea Bottom and Its Production of Fish Food. Reports of the Danish Biological Station. No. 25. 1918:1–62.Google Scholar
  39. Rohlf, F.J.; Davenport, D. Simulation of simple models of animal behavior with a digital computer. J. Theor. Biol. 23:400–424; 1969.PubMedCrossRefGoogle Scholar
  40. Rosenzweig, M.L. Net primary productivity of terrestrial communities: Prediction from climatological data. Am. Nat. 102:67–74; 1968.CrossRefGoogle Scholar
  41. Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications I. Hydrological balance, canopy gas exchange and primary production processes. Ecol. Model. 42:125–154; 1988.CrossRefGoogle Scholar
  42. Running, S.W.; Nemani, R.R. 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 24:347–367; 1988.CrossRefGoogle Scholar
  43. Running, S.W.; Nemani, R.R.; Peterson, D.L.; Band, L.E.; Potts, D.F.; Peirce, L.L.; Spanner, M.A. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101; 1989.CrossRefGoogle Scholar
  44. Semper, K. Animal Life as Affected by the Natural Conditions of Existence. New York: Appleton; 1881.Google Scholar
  45. Sheppard, C.W.; Householder, A.S. The mathematical basis of the interpretation of tracer experiments in closed, steady-state systems. J. Appl. Phys. 22:510–520; 1951.CrossRefGoogle Scholar
  46. Shugart, H.H. A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models. New York: Springer-Verlag; 1984.Google Scholar
  47. Shugart, H.H.; Terrestrial Ecosystems in Changing Environments. Cambridge: Cambridge Univ. Pr.; 1998.Google Scholar
  48. Shugart, H.H.; O’Neill, R.V., eds. Systems Ecology. Stroudsburg, PA: Dowden, Hutchinson and Ross; 1979.Google Scholar
  49. Shugart, H.H.; Smith, T.M.; Post, W.M. The application of individual-based simulation models for assessing the effects of global change. Annu. Rev. Ecol. Syst. 23:15–38; 1992.Google Scholar
  50. Shugart, H.H.; West, D.C. Forest succession models. BioScience 30:308–313; 1980.CrossRefGoogle Scholar
  51. Smith, J.M. Models in Ecology. Cambridge: Cambridge Univ. Pr.; 1974.Google Scholar
  52. Solomon, A.K. Equations for tracer experiments. J. Clin. Invest. 28:1297–1307; 1949.PubMedCrossRefGoogle Scholar
  53. Teorell, T. Kinetics of distribution of substances administered to the body. Arch. Int. Pharmacodyn. 57:205–240; 1937.Google Scholar
  54. Thienemann, A. Lebengemeinschaft und Lebensraum. Naturwissenshaft Wocheschrift, N.F. 17:282–290; 297-303; 1918.Google Scholar
  55. Timothy, L.K.; Bona, E. State Space Analysis: An Introduction. New York: McGraw-Hill; 1968.Google Scholar
  56. Urban, D.L.; Shugart, H.H. Individual-based models of forest succession. In: Glenn-Lewin, D.C.; Peet, R.K.; Veblen, T.T., eds. Plant Succession: Theory and Prediction. London: Chapman and Hall; 1992:249–293.Google Scholar
  57. Wiegert, R.G. The past, present and future of ecological energetics. In: Pomeroy, L.R.; Alberts, J.J., eds. Concepts of Ecosystem Ecology. New York: Springer-Verlag; 1988:29–56.CrossRefGoogle Scholar
  58. Woodward, F.I.; Smith, T.M.; Emanuel, W.R. A global land primary productivity and phytogeography model. Global Biogeochem. Cycl. 9:471–490; 1995.CrossRefGoogle Scholar
  59. Yodzis, P. Introduction to Theoretical Ecology. New York: Harper and Row; 1989.Google Scholar
  60. Zilversmit, D.B.; Entenmann, C.; Fishier, M.C. On the calculation of turnover time and turnover rate from experiments involving the use of labeling agents. J. Gen. Physiol. 26:325–331; 1943.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Herman H. Shugart

There are no affiliations available

Personalised recommendations