Biogenic Trace Gas Exchanges

  • Pamela Matson
  • Allen Goldstein


Biogenic trace gases are defined as those gases of biological origin whose atmospheric mixing ratios (concentrations by volume) are less than a few parts per million by volume (ppmv). In the past several decades, knowledge of trace gas exchanges between terrestrial or aquatic systems and the atmosphere, and of the biological, physical, and chemical processes that control them, has increased dramatically. The increased attention and research effort in this area stems primarily from the fact that the atmospheric concentrations of a number of trace gases are increasing. The increases of some of the less reactive gases such as nitrous oxide (N2O) and methane (CH4) are documented in the 20-year or longer record of atmospheric measurements at sampling stations throughout the world (e.g., Prinn et al. 1990, Steele et al. 1992) and by the long-term record provided through the analysis of gases trapped in glacial ice (e.g., Raynaud et al. 1988); increases in some reactive trace gases such as oxides of nitrogen (NOX) and ozone have been determined via ground-based ambient concentration measurements, ground- or aircraft-based flux measurements and atmospheric models. The consequences of these atmospheric changes are felt at a variety of scales; some contribute to the radiative balance of Earth and hence climate change, and others have critical roles in regional and global atmospheric chemistry.


Isoprene Emission Nitrous Oxide Flux Enclosure Method Arctic Boundary Layer Biogenic Sulfur Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambus, P.; Robertson, G.P. Automated near-continuous measurement of carbon dioxide and nitrous oxide fluxes from Soil. Soil Sci. Soc. Am. 62:394–400; 1998.CrossRefGoogle Scholar
  2. Aneja, V.P.; Cooper, W.J. Biogenic sulfur emissions: A review. In: Saltzman E.S.; Cooper W.J., eds. Biogenic Sulfur in the Environment. Washington, DC: American Chemical Society; 1989:2–13.CrossRefGoogle Scholar
  3. Baldocchi, D.D. Canopy control of trace gas emissions. In: Sharkey, T.D., Holland, E.A., Mooney, H.A., eds. Trace Gas Emissions by Plants. San Diego, CA: Academic; 1991:293–333.Google Scholar
  4. Baldocchi, D.D.; Hicks, B.B.; Meyers, T.P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69(5): 1331–1340; 1988.CrossRefGoogle Scholar
  5. Bartlett, D.S.; Bartlett, K.B.; Hartmann, J.M.; Harriss, R.C.; Sebacher, D.I.; Pelletier-Travis, R.; Dow, D.D.; Brannon, D.P. Methane emissions from the Florida Everglades: Patterns of variability in a regional wetland ecosystem. Global Biogeochemical Cycles 3:363–374; 1989.CrossRefGoogle Scholar
  6. Bartlett, D.S.; Crill, P.M.; Bonassi, J.A.; Richey, J.E.; Harris, R.C. Methane flux 95:16,773–816, 778; 19Google Scholar
  7. Bartlett, K.B.; Harriss, R.C. Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320; 1993.CrossRefGoogle Scholar
  8. Bouwman, A.F. Direct Emission of Nitrous Oxide from Agricultural Soils. Report nr 773004004. Bilthoven, Netherlands: National Institute of Public Health, Environmental Protection; 1994.Google Scholar
  9. Brasseur, G.P.; Chatfield, R.B. The fate of biogenic trace gases in the atmosphere. In: Sharkey, T.D.; Holland, E.A.; Mooney, H.A.; eds. Trace Gas Emissions by Plants. San Diego, CA: Academic; 1991:1–27.Google Scholar
  10. Brooks, P.D.; Atkins, G.J.; Herman, DJ.; Prosser, S.J.; Barrie, A. Rapid, isotopic analysis of selected soil gases at atmospheric concentrations. In: Harper, L.A., Mosier, A.R.; Duxbury, J.M.; Rolston, D.E.; eds. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. Volume Special Publication 55. Madison, WI: American Society of Agronomy; 1993:193–202.Google Scholar
  11. Castro, M.S.; Galloway, J.N. A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between the soils and the atmosphere. J. Geophys. Res. 96:15427–15437; 1991.CrossRefGoogle Scholar
  12. Chameides, W.L.; Lindsay, R.W.; Richardson, J.; Kiang, C.S. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241:1473–1475; 1988.PubMedCrossRefGoogle Scholar
  13. Chanton, J.P.; Dacey, J.W.H. Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition. In: Sharkey, T.D.; Holland, E.A.; Mooney, H.A.; eds. Trace Gas Emissions by Plants. San Diego, CA: Academic; 1991:65–92.Google Scholar
  14. Chanton, J.P.; Martens, C.S. Seasonal variations in ebullitive flux and carbon isotopic composition of methane in a tidal freshwater estuary. Global Biogeochem. Cycl. 2:289–298; 1988.CrossRefGoogle Scholar
  15. Chanton, J.P.; Martens, C.S.; Kelley, C.A. Gas transport from methane-saturated tidal freshwater and wetland sediments. Limnol. Oceanogr. 34:807–819; 1989.CrossRefGoogle Scholar
  16. Chanton, J.P.; Whiting, G.J. Trace gas exchange in freshwater and coastal marine environments: Ebullition and transport by plants. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:98–125.Google Scholar
  17. Clark, J.F.; Simpson, H.J.; Smethie, W.M.; Toles, C. Gas exchange in a contaminated estuary inferred from chlorofluoroocarbons. Geophys. Res. Lett. 19:1133–1136; 1992.CrossRefGoogle Scholar
  18. Crill, P.M.; Bartlett, K.B.; Wilson, J.O. Tropospheric methane from an Amazonian floodplain lake. J. Geophys. Res. 93:1564–1570; 1988.CrossRefGoogle Scholar
  19. Crill, P.M.; Butler, J.H.; Cooper, DJ.; Novelli, PC Standard analytical methods for measuring trace gases in the environment. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:164–205.Google Scholar
  20. Davidson, E.A. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 56:95–102; 1992.CrossRefGoogle Scholar
  21. Davidson, E.A. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In: Oremland, R.S. ed. Bio geochemistry of Global Change: Radiatively Active Trace Gases. New York: Chapman and Hall; 1993:369–386.Google Scholar
  22. Davidson, E.A.; Matson, P.A.; Vitousek, P.M.; Riley, R.; Garcia-Mendez, G.; Maass, J.M. Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130–139; 1993.CrossRefGoogle Scholar
  23. Davis, K.J. Surface Fluxes of Trace Gases Derived from Convective-Layer Profiles. Ph.D. dissertation, University of Colorado, Boulder, CO; 1992.Google Scholar
  24. Denmead, O.T. Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci. Soc. Am. J. 43:89–95; 1979.CrossRefGoogle Scholar
  25. Denmead, O.T. Micrometeorological methods for measuring gaseous losses of nitrogen in the field. In: Freney, J.R.; Simpson, J.R.; eds. Gaseous Loss of Nitrogen from Plant-Soil Systems. The Hague, Netherlands: Martinus Nijhoff/W. Junk; 1983:133–157.Google Scholar
  26. Devol, A.H.; Richey, J.E.; Clark, W.A.; King, S.L.; Martinelli, L.A. Methane emissions to the troposphere from the Amazon floodplain. J. Geophys. Res. 93:1583–1592; 1988.CrossRefGoogle Scholar
  27. Eichner, M.J. Nitrous oxide emissions from fertilized soils: Summary of available data. J. Environ. Qual. 19:272–280; 1990.CrossRefGoogle Scholar
  28. Fehsenfeld, F. Measurement of chemically reactive trace gases at ambient concentrations. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:206–258.Google Scholar
  29. Fehsenfeld, F.; Calvert, J.; Fall, R.; Goldan, P.; Guenther, A.B.; Hewitt, C.N.; Lamb, B.; Liu, S.; Trainer, M.; Westberg, H. et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem. Cycl. 6(4):389–430; 1992.CrossRefGoogle Scholar
  30. Firestone, M.K.; Davidson, E.A. Microbial basis of NO and N2O production and consumption in soil. In: Andreae, M.O.; Schimel, D.S.; eds. Exchange of Trace Gases Between Terrestrial Systems and the Atmosphere. New York: Wiley; 1989:7–21.Google Scholar
  31. Frankignoulle, M. Field measurements of air-sea CO2 exchange. Limnol. Oceanogr. 33:313–322; 1988.CrossRefGoogle Scholar
  32. Freney, J.R.; Simpson, J.R. Volatilization of ammonia. In: Freney, J.R.; Simpson, J.R.; eds. Gaseous Loss of Nitrogen from the Plant-Soil System. The Hague, Netherlands: Dr. W. Junk; 1983:1–32.Google Scholar
  33. Goldan, P.D.; Kuster, W.C.; Albritton, D.S.; Fehsenfeld, F.C. The measurement of natural sulfur emissions from soils and vegetation: Three sites in the eastern United States revisited. J. Atmos. Chem. 5:439–467; 1987.CrossRefGoogle Scholar
  34. Goldstein, A.H.; Fan, S.M.; Goulden, M.L.; Munger, J.W.; Wofsy, S.C. Emissions of ethene, propene, and 1-butene by a midlatitude forest. J. Geophys. Res. 101:9,149–159,157; 1996.Google Scholar
  35. Gosz, J.R.; Dahm, C.N.; Risser, P.G. Long-path FTIR measurement of atmospheric trace gas concentrations. Ecology 69(5): 1326–1330; 1988.CrossRefGoogle Scholar
  36. Guenther, A.; Zimmerman, P.; Klinger, L.; Greenberg, J.L.; Ennis, C.; Davsi, K.; Pollock, M.; Westberg, H.; Allwine, G.; Geron, C. Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements. J. Geophys. Res. 101:1345–1359; 1996.CrossRefGoogle Scholar
  37. Harriss, R.C.; Wofsy, S.C.; Bartlett, D.S. The Arctic boundary layer expedition (ABLE 3A): July–August 1988. J. Geophys. Res. 97:16383–16394; 1992.CrossRefGoogle Scholar
  38. Harriss, R.C.; Garstang, M.; Wofsy, S.C.; Beck, S.M.; Bendura, J.R.; Coelho, J.R.B.; Drewry, J.W.; Hoell, J.M.; Matson, P.A.; McNeal, R.J.; Molion, C.B.; Navarro, R.L.; Rabine, V.; Snell, R.L. The Amazon Boundary Layer Experiment (ABLE 2B): Wet season 1987. J. Geophys. Res. 95:16,721–816,736; 1990.Google Scholar
  39. Harriss, R.C., Wofsy, S.C.; Garstang, M.; Browell, E.V.; Molion, L.C.B.; McNeal, R.J.; Hoell, J.M.; Jr.; Bendura, R.J.; Beck, S.M.; Navarro, R.L.; Riley, J.T.; Snell, R.L. The Amazon Boundary Layer Experiment (ABLE 2A): Dry season 1985. J. Geophys. Res. 93:1351–1360; 1988.CrossRefGoogle Scholar
  40. Horst, T.W.; Weil, J.C. Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound Lay. Meterol. 59:279–296; 1992.CrossRefGoogle Scholar
  41. Imberger, J. The diurnal mixed layer. Limnol. Oceanogr. 30:737–770; 1985.CrossRefGoogle Scholar
  42. Isidorov, V.A.; Zenkevich, I.G.; Ioffe, B.V Volatile organic compounds in the atmosphere of forests. Atmos. Environ. 19:1–8; 1985.CrossRefGoogle Scholar
  43. Juuti, S.; Arey, J.; Atkinson, R. Monoterpene emission rate measurements from a Monterey pine. J. Geophys. Res. 95:7515–7519.; 1990.CrossRefGoogle Scholar
  44. Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford: Oxford Univ. Pr.; 1992.Google Scholar
  45. Keller, M.; Kaplan, W.A.; Wofsy, S.C. Emissions of N2O, CH4, and CO2 from tropical soils. J. Geophys. Res. 91:11791–11802; 1986.CrossRefGoogle Scholar
  46. Keller, M.M.; Stallard, R.F. Methane emission by bubbling from Gatun Lake, Panama. J. Geophys. Res. 99:8307–8319; 1994.CrossRefGoogle Scholar
  47. Knoerr, K.R.; Mawry, F.L. Energy balance/Bowen ratio techniques for estimating hydrocarbon fluxes. In: Bufalinin J.J.; Arnts, R.R.; eds. Atmospheric Biogenic Hydrocarbons. Stoneham, MA: Butterworth; 1981:35–52.Google Scholar
  48. Kolb, C.E.; Wormhoudt, J.C.; Zahniser, M.S. Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:259–290.Google Scholar
  49. Kuster, W.C.; Goldan, P.D. Quantitation of the losses of gaseous sulfur compounds to enclosure walls. Environ. Sci. Technol. 21:810–815; 1987.PubMedCrossRefGoogle Scholar
  50. Lamb, B.; Guenther, A.; Gay, D.; Westbert, H. A national inventory of biogenic hydrocarbon emissions. Atmos. Environ. 21:1695–1705; 1987.CrossRefGoogle Scholar
  51. Lamb, B.; Westerberg, H.; Allwine, G. Biogenic hydrocarbon emissions from deciduous and coniferous trees in the United States. J. Geophys. Res. 90:2380–2390; 1985.CrossRefGoogle Scholar
  52. Lenschow, D.H. Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:126–163.Google Scholar
  53. Lenschow, D.H.; Hicks, B.B.; eds. Global Tropospheric Chemistry: Chemical Fluxes in the Global Atmosphere. Boulder, CO: National Center for Atmospheric Research; 1989.Google Scholar
  54. Lerdau, M.; Dilts, S.B.; Westberg, H.; Lamb, B.K. Monoterpene emission from Ponderosa Pine. J. Geophys. Res. 99(D8):16609–16615; 1994.CrossRefGoogle Scholar
  55. Liss, P.S. Gas transfer: Experiments and geochemical implications. In: Liss, P.S.; Slinn, W.G.N.; eds. Air-Sea Exchange of Gases and Particle. Dordrecht, Netherlands: Reidel; 1983:241–298.CrossRefGoogle Scholar
  56. Liu, P.C.; Schwab, D.J. A comparison of methods for estimating u* from given uz and air-sea temperature difference. J. Geophys. Res. 92:6488–6494; 1987.CrossRefGoogle Scholar
  57. Livingston, G.P.; Hutchinson, G.L. Enclosure-based measurement of trace gas exchange: Applications and sources of error. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Oxford: Blackwell; 1995:14–51.Google Scholar
  58. Livingston, G.; Vitousek, P.M.; Matson, P.A. Nitrous oxide fluxes and nitrogen transformations across a landscape gradient in Amazonia. J. Geophys. Res. 93:1593–1599; 1988.CrossRefGoogle Scholar
  59. Logan, J.A. Nitrogen oxides in the troposphere: Global and regional budgets. J. Geophys. Res. 88:10,785–810,807; 1983.Google Scholar
  60. MacIntyre, S.; Wanninkhof, R.; Chanton, J.P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:52–97.Google Scholar
  61. MacTaggart, D.L.; Adams, D.F.; Farwell, S.O. Measurement of biogenic sulfur emissions from soil and vegetation using dynamic enclosure methods: Total sulfur gas emissions via MFC/FD/FPD determination. J. Atmos. Chem. 5:417–437; 1987.CrossRefGoogle Scholar
  62. Margolis, H.A.; Ryan, M.G. A physiological basis for biosphere-atmosphere interactions in the boreal forest: An overview. Tree Physiol. 17:491–499; 1997.PubMedCrossRefGoogle Scholar
  63. Martens, C.S.; Kelley, C.A.; Chanton, J.P.; Showers, W. Carbon and hydrogen isotopic composition of methane from wetlands and lakes of the Yukon-Kuskokwim Delta and the Alaskan tundra. J. Geophys. Res. 97:16689–16703; 1992.CrossRefGoogle Scholar
  64. Matson, P.A.; Billow, C.; Hall, S. Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. J. Geophys. Res. 101(D13):18533–18545; 1996.CrossRefGoogle Scholar
  65. Matson, P.A.; Harriss, RC; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995.Google Scholar
  66. Matson, P.A.; Harriss, R.C. Trace gas exchange in an ecosystem context: Multiple approaches to measurement and analysis. In: Matson, P.A.; Harriss, R.C.; eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Cambridge, MA: Blackwell; 1995:1–13.Google Scholar
  67. Matson, P.A.; Naylor, R.L.; Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280:112–115; 1998.PubMedCrossRefGoogle Scholar
  68. Matson, P.A.; Vitousek, P.M. Ecosystem approach to a global nitrous oxide budget. Bioscience 40(9):667–672; 1990.CrossRefGoogle Scholar
  69. Matson, P.A.; Vitousek, P.M.; Livingston, G.P.; Swanberg, N.A. Sources of variation in nitrous oxide flux from Amazonian ecosystems. J. Geophys. Res. 95:16789–16798; 1990.CrossRefGoogle Scholar
  70. Matson, P.A.; Vitousek, P.M.; Schimel, D.S. Regional extrapolation of trace gas flux based on soils and ecosystems. In: Andreae, M.O.; Schimel, D.S.; eds. Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. New York: Wiley; 1989:97–108.Google Scholar
  71. Matthews, E. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem. Cycl. 8(4):411–439; 1994.CrossRefGoogle Scholar
  72. Miller, L.G.; Oremland, R.S. Methane efflux from the pelagic regions of four lakes. Global Biogeochem. Cycl. 2:269-; 1988.CrossRefGoogle Scholar
  73. Monson, R.K.; Fall, R. Isoprene emission from Aspen leaves: The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol. 90:267–274; 1989.PubMedCrossRefGoogle Scholar
  74. Morrison, M.C.; Hines, M.E. The variability of biogenic sulfur flux from a temperate salt marsh on short time and space scales. Atmos. Environ. 24A:1771–1779; 1990.Google Scholar
  75. Mosier, A.R.; Hutchinson, G.L. Nitrous oxide emissions from cropped fields. J. Environ. Qual. 10:169–173; 1981.CrossRefGoogle Scholar
  76. Mosier, A.R.; Schimel, D.; Valentine, D.; Bronson, K.; Parton, W. Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands. Nature 350:330–332; 1991.CrossRefGoogle Scholar
  77. Nazaroff, W.W. Radon transport from soil to air. Rev. Geophys. 30:137–160; 1992.CrossRefGoogle Scholar
  78. Nemecek-Marshal, M.; MacDonald, R.C.; Franzen, J.J.; Wojciechowski, C.L.; Fall, R. Methanol emission from plants. Plant Physiol. 108:1359–1368; 1995.Google Scholar
  79. Prinn, R.G.; Cunnold, D.; Rasmussen, R. Atmospheric emissions and trends of nitrous oxide deduced from ten years of ALE-GAGE data. J. Geophys. Res. 95:18369–18385; 1990.CrossRefGoogle Scholar
  80. Raynaud, D.; Chappellaz, J.; Barnola, J.M.; Korotkevitch, Y.S.; Lorius, C. Climate and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature 333:655–657; 1988.CrossRefGoogle Scholar
  81. Rennenberg, H. The significance of higher plants in the emission of sulfur compounds from terrestrial ecosystems. In: Sharkey, T.D.; Holland, E.A.; Mooney, H.A.; eds. Trace Gas Emissions by Plants. San Diego, CA: Academic; 1991: 217–260.Google Scholar
  82. Robertson, G.P. Geostatistics in Ecology: interpolating with known variance. Ecology 68:744–748; 1987.CrossRefGoogle Scholar
  83. Rossi, R.E.; Mulla, D.J.; Journel, A.G.; Franz, E.H. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62(2):277–314; 1992.CrossRefGoogle Scholar
  84. Schjoerring, J.K. Ammonia emission from the foliage of growing plants. In: Sharkey, T.D.; Holland, E.A.; Mooney, H.A.; eds. Trace Gas Emissions by Plants. San Diego, CA: Academic; 1991:267–292.Google Scholar
  85. Schlesinger W.H.; Hartley A.E. A global budget for atmospheric NH3. Biogeochemistry 15(3): 191–211; 1992Google Scholar
  86. Schmid, H.P. Source areas of scalars and scalar fluxes. Bound Lay. Meteorol. 67:293–318; 1994.CrossRefGoogle Scholar
  87. Schmid, H.P. Experimental Design for Flux Measurements: Matching Scales of Observations and Fluxes. Agric. For. Meteorol. 87:179–200; 1997.CrossRefGoogle Scholar
  88. Schuepp, P.H.; Leclerc, M.Y.; Macpherson, J.I.; Desjardins, R.L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound. Lay. Meteorol. 50(N1-4):353–373; 1990.CrossRefGoogle Scholar
  89. Sebacher, D.I.; Harriss, R.C.; Bartlett, K.B. Methane flux across the air-water interface: Air velocity effects. Tellus 35B:103–109; 1983.CrossRefGoogle Scholar
  90. Sellers, P.; Hall, F.; Margolis, H.; Kelly, B. The Boreal Ecosystem-Atmosphere Study (BOREAS): An overview and early results from the 1994 field year. Bull. Am. Meteorol. Soc. 76(9): 1549–1577; 1995.CrossRefGoogle Scholar
  91. Sillman, S.; Logan, J.A.; Wofsy, S.C. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. 95:1837–1851; 1990.CrossRefGoogle Scholar
  92. Steele, L.P.; Dlugokensky, E.J.; Lang, P.M.; Tans, P.P.; Martin, R.C.; Masarie, K.A. Slowing down of the global accumulation of atmospheric methane during the late 1980’s. Nature 358:313–316; 1992.CrossRefGoogle Scholar
  93. Steudler, P.P.; Bowden, R.D.; Melillo, J.M.; Aber, J.D. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–316; 1989.CrossRefGoogle Scholar
  94. Tingey, D.R.; Evans, R.C.; Bates, E.H.; Gumpertz, M.L. Isoprene emissions and photosynthesis in three ferns: The influence of light and temperature. Plant Physiol. 69:609–616; 1987.CrossRefGoogle Scholar
  95. Tingey, D.T.; Turner, D.P; Weber, J.A. Factors controlling the emissions of monoterpenes and other volatile organic compounds. In: Sharkey, T.D.; Holland, E.A.; Mooney, H.A.; eds. Trace Gas Emissions by Plants. San Diego, CA: Academic; 1991:93–119.Google Scholar
  96. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97:7373–7382; 1992.CrossRefGoogle Scholar
  97. Whalen, S.C.; Reeburgh, W.S. Interannual variations in tundra methane emission: A 4-year time series at fixed sites. Global Biogeochem. Cycl. 6:139–159; 1992.CrossRefGoogle Scholar
  98. Winer, A.M.; Fitz, D.R.; Miller, PR. Investigation of the Role of Natural Hydrocarbons in Photochemical Smog Formation in California. Report nr AO-056-32. Statewide Air Pollution Research Center, University of California, Riverside; California Air Resources Board; 1983.Google Scholar
  99. Zahniser, M.S.; Nelson, D.D.; McManus, J.B.; Kebabian, P.L. Measurement of trace gas fluxes using tunable diode laser spectroscopy. Philosoph. Trans. R. Soc. Lond. A351:371–382; 1995.CrossRefGoogle Scholar
  100. Zimmerman, P.R. Tampa Bay Area Photochemical Oxidant Study. Determination of Emission Rates of Hydrocarbons from Indigenous Species of Vegetation in the Tampa/St. Petersburg, Florida, Area. Report nr EPA 904/9-77-028. Atlanta, GA: U.S. Environmental Protection Agency; 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Pamela Matson
  • Allen Goldstein

There are no affiliations available

Personalised recommendations