Skip to main content

Leukocyte—Endothelial Cell Interactions: Review of Adhesion Molecules and Their Role in Organ Injury

  • Chapter
Book cover Multiple Organ Failure

Abstract

The causes of multiple organ injury, which are likely multifactorial, include microcirculatory vasoconstriction, local organ inflammatory mediator production, endothelial activation, and inappropriate polymorphonuclear neutrophil (PMN) sequestration and activation. This review focuses on leukocyteendothelial interactions involving neutrophils and leading to tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metchnikoff E: Sur la lutte des cellules de l’organisme contrel’invasion des microbes. Ann Inst Pasteur 1887; 1: 321–336.

    Google Scholar 

  2. Harlan JM, Schwartz BR, Reidy MA, et al: Activated neutrophils disrupt endothelial monolayer integrity by oxygen radical-dependent mechanism. Lab Invest 1985; 52: 141–150.

    PubMed  CAS  Google Scholar 

  3. Williams JH Jr, Patel SK, Hatakeyama D, et al: Activated pulmonary vascular neutrophils as early mediators of endotoxin-induced lung inflammation. Am J Respir Cell Mol Biol 1993; 8: 134–144.

    Article  PubMed  CAS  Google Scholar 

  4. Hill J, Lindsay T, Rusche J, et al: A Mac-1 antibody reduces Ever and lung injury but not neutrophil sequestration after intestinal ischemia-reperfusion. Surgery 1992; 112: 166–172.

    PubMed  CAS  Google Scholar 

  5. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–304.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson BO, Brown JM, Shanley PF, et al: Marginating neutrophils are reversibly adherent to normal lung endothelium. Surgery 1991; 109: 51–61.

    PubMed  CAS  Google Scholar 

  7. Worthen GS, Tonnesen MG, Lien DC, et al: Interactions of leukocytes with pulmonary endothelium. In: Ryan US (ed) Pulmonary Endothelium in Health and Disease. New York, Marcel Dekker, 1987; 123–160.

    Google Scholar 

  8. Wiernik PH: Neutrophil functions in infection. In: Andriole VT (ed) Mediguide to Infectious Diseases, vol 9. New York, Lawrence DellaCorte Publications, 1989; 1–8.

    Google Scholar 

  9. Muir AL, Cruz M, Martin BA, et al: Leukocyte kinetics in the human lung: role of exercise and catecholamines. J Appl Physiol 1984; 57: 711–719.

    PubMed  CAS  Google Scholar 

  10. Schleiffenbaum B, Moser R, Patarroyo M, et al: The cell surface glycoprotein Mac-1 (CD11b/CD 18) mediates neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression. J Immunol 1989; 142: 3537–3545.

    PubMed  CAS  Google Scholar 

  11. Ryan US: Activation of endothelial cells. Ann NY Acad Sci 1987; 516: 22–38.

    Article  PubMed  CAS  Google Scholar 

  12. Matsubara T, Ziff M: Superoxide anion release by human endothelial cells: synergism between a phorbol ester and a calcium ionophore. J CeU Physiol 1986; 127: 207–210.

    Article  CAS  Google Scholar 

  13. Gross JL, Moscatelli D, Rifkin DB: Increased capillary endothelial cell protease activity in response to antigenic stimuli in vitro. Proc Natl Acad Sci USA 1983; 80: 2623–2627.

    Article  PubMed  CAS  Google Scholar 

  14. Linas SL, Whittenburg D, Repine JE: Role of xanthine oxidase in ischemia/reperfusion injury. Am J Physiol 1990; 258: F711–F716.

    PubMed  CAS  Google Scholar 

  15. Shaw JO, Henson PM: Pulmonary intravascular sequestration of activated neutrophils: failure to induce light-microscopic evidence of lung injury in rabbits. Am J Pathol 1982; 108: 17–23.

    PubMed  CAS  Google Scholar 

  16. Wickel DJ, Cheadle WG, Mercer-Jones MA, Garrison RN: Poor outcome from peritonitis is caused by disease acuity and organ failure, not recurrent peritoneal infection. Ann Surg 1997; 225: 744–756.

    Article  PubMed  CAS  Google Scholar 

  17. Harlan JM, Winn RK, Vedder NB, et al: In vivo models of leukocyte adherence to endothelium. In: Harlan JM, Lui DY (eds) Adhesion: Its Role in Inflammatory Disease. New York, Freeman, 1992; 117–150.

    Google Scholar 

  18. Wright SD, Lo SL, Detmers PA: Specificity and regulation of CD18-dependent adhesions. In: Springer TA, Anderson DC, Rosenthal AS, Rothlein R (eds) Leukocyte Adhesion Molecules: Structure, Function, and Regulation. New York, Springer, 1990; 190–207.

    Chapter  Google Scholar 

  19. Pober JS, Cotran RS: The role of endothelial cells in inflammation. Transplantation 1990; 50: 537–544.

    Article  PubMed  CAS  Google Scholar 

  20. Muller WA: The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 1995; 57: 523–528.

    PubMed  CAS  Google Scholar 

  21. Huber AR, Kunkel SL, Todd RF, et al: Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 1991; 253: 1–4.

    Google Scholar 

  22. Ley K, Gaehtgens P: Endothelial, not hemodynamic, differences are responsible for preferential leukocyte rolling in rat mesenteric venules. Ciro Res 1991; 69: 1034–1039.

    Article  CAS  Google Scholar 

  23. Downey GP, Worthen GS, Henson PM, et al: Neutrophil sequestration and migration in localized pulmonary inflammation. Ann Rev Respir Dis 1993; 147: 168–176.

    Article  CAS  Google Scholar 

  24. Doerschuk CM, Beyers N, Goxson HO, et al: Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J Appl Physiol 1993; 74: 3040–3045.

    PubMed  CAS  Google Scholar 

  25. Gaboury JP, Johnston B, Niu X-F, et al: Mechanisms underlying acute mast cell-induced leukocyte rolling and adhesion in vivo. J Immunol 1995; 154: 804–813.

    PubMed  CAS  Google Scholar 

  26. Conlan JW, North R: Listeria monocytogenes, but not Salmonella typhimurium, elicits a CD18-independent mechanism of neutrophil extravasation into the murine peritoneal cavity. Infect Immun 1994; 62: 2702–2706.

    PubMed  CAS  Google Scholar 

  27. Ramamoorthy C, Sasaki SS, Su DL, et al: CD 18 adhesion blockade decreases bacterial clearance and neutrophil recruitment after intrapulmonary E. coli but not after S. aureus. J Leukoc Biol 1997; 61: 167–172.

    PubMed  CAS  Google Scholar 

  28. Gallatin WM, Weiisman IL, Butcher EG; A cell-iurface molecule involved in organ-specific homing of lymphocytes. Nature 1983; 304: 30–34.

    Article  PubMed  CAS  Google Scholar 

  29. Hsu-Lin SC, Berman CL, Furie BC, et al: A platelet membrane protein expressed during platelet activation and secretion. J Biol Chem 1984; 259: 9121–9126.

    PubMed  CAS  Google Scholar 

  30. McEver RP, Martin MN: A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem 1984; 259: 9799–9804.

    PubMed  CAS  Google Scholar 

  31. Bevilacqua MP, Pober JS, Mendrick DL, et al: Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 1987; 84: 9238–9242.

    Article  PubMed  CAS  Google Scholar 

  32. Tedder TF, Steeber DA, Chen A, et al: The selectins: vascular adhesion molecules. FASEB J 1995; 9: 866–873.

    PubMed  CAS  Google Scholar 

  33. Sako D, Chang XJ, Barone KM, et al: Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 1993; 75: 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  34. Kishimoto TK, Jutila MA, Berg EL, et al: Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 1989; 245: 1238–1241.

    Article  PubMed  CAS  Google Scholar 

  35. Albelda SM, Smith CW, Ward PA: Adhesion molecules inflammatory injury. FASEB J 1994; 8: 504–512.

    PubMed  CAS  Google Scholar 

  36. VonAndrian UH, Chambers JD, Berger EM, et al: L-selectin mediates neutrophil rolling in inflamed venules through sialyl Lewis X-dependent and independent recognition pathways. Blood 1993; 82: 182–191.

    Google Scholar 

  37. Gearing AJ, Newman W: Circulating adhesion molecules in disease. Immunol Today 1993; 14: 506–512.

    Article  PubMed  CAS  Google Scholar 

  38. Weller A, Isnemann S, Vestweber D: Cloning of the mouse endothelial selectins: expression of both E-and P-selectin is inducible by tumor necrosis factor a. J Biol Chem 1992; 267: 15176–15183.

    PubMed  CAS  Google Scholar 

  39. Gotsch U, Jager U, Dominis M, et al: Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhes Commun 1994; 2: 7–14.

    Article  PubMed  CAS  Google Scholar 

  40. Symon FA, Walsh GM, Watson S, et al: Eosinophil adhesion to nasal polyp endothelium is P-selectin dependent. J Exp Med 1994; 180: 371–376.

    Article  PubMed  CAS  Google Scholar 

  41. Keelan ETM, Licence ST, Peters AM, et al: Characterization of E-selectin expression in vivo with use of a radio labeled monoclonal antibody. Am J Physiol 1994; 266: H279–H290.

    CAS  Google Scholar 

  42. Bevilacqua MP, Stengelin S, Gimbrone MA, et al: Endothelial leukocyte adhesion molecule. 1. An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989; 243: 1160–1164.

    Article  PubMed  CAS  Google Scholar 

  43. Issekutz AC, Chuluyan HE, Lopes N: CD11/CD18-independent transendothelial migration of human polymorphonuclear leukocytes and monocytes: involvement of distinct and unique mechanisms. J Leukoc Biol 1995; 57: 553–561.

    PubMed  CAS  Google Scholar 

  44. Wickel DJ, Mercer-Jones M, Peyton JC, et al: Neutrophil sequestration during early fecal peritonitis is P-selectin dependent in peritoneum but selectin independent in lung. Shock 1998; 10: 265–269.

    Article  PubMed  CAS  Google Scholar 

  45. Mayadas TN, Johnson RC, Rayburn H, et al: Leukocyte rolling and extravasation are severely compromised in P-selectin deficient mice. Cell 1993; 74: 541–554.

    Article  PubMed  CAS  Google Scholar 

  46. Kunkel EJ, Jung U, Bullard DC, et al: Absence of trauma-induced leukocyte rolling in mice deficient in both P-selectin and intercellular adhesion molecule-1. J Exp Med 1996; 183: 57–65.

    Article  PubMed  CAS  Google Scholar 

  47. Bullard DC, Kunkel EJ, Kubo H, et al: Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J Exp Med 1996; 183: 2326–2336.

    Article  Google Scholar 

  48. Ley K, Tedder TF: Leukocyte interactions with vascular endothelium. J Immunol 1995; 155: 525–528.

    PubMed  CAS  Google Scholar 

  49. Arbones ML, Ord DC, Ley K, et al: Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994; 1: 247–260.

    Article  PubMed  CAS  Google Scholar 

  50. Mulligan MS, Miyasaka M, Tamatani T, et al: Requirement for L-selectin in neutrophil-mediated lung injury in rats. J Immunol 1994; 152: 832–840.

    PubMed  CAS  Google Scholar 

  51. Garden DL, Young JA, Granger DN: Pulmonary microvascular injury after intestinal ischemia-reperfusion: role of P-selectin. J Appl Physiol 1993; 75: 2529–2534.

    Google Scholar 

  52. Mulligan MS, Polley MJ, Bayer RJ, et al: Neutrophil-dependent acute lung injury. J Clin Invest 1992; 90: 1600–1607.

    Article  PubMed  CAS  Google Scholar 

  53. Mulligan MS, Lowe JB, Larsen RD, et al: Protective effects of sialylated oligosaccharides in immune complex-induced acute lung injury. J Exp Med 1993; 178: 623–631.

    Article  PubMed  CAS  Google Scholar 

  54. Lo SK, Bevilacqua MB, Mali AB: E-selectin ligand mediate tumor necrosis factor induced neutrophil sequestration and pulmonary edema in guinea pig lungs. Circ Res 1994; 75: 955–960.

    Article  PubMed  CAS  Google Scholar 

  55. Ruoslahti E, Noble NA, Kagami S, Border WA: Integrins. Kidney Int 1994; 45: 17–22.

    Google Scholar 

  56. Windsor ACJ, Mullen PG, Fowler AA, et al: Role of the neutrophil in adult respiratory distress syndrome. Br J Surg 1993; 80: 10–17.

    Article  PubMed  CAS  Google Scholar 

  57. Nathan C, Srimal S, Farber C, et al: Cytokine-induced respiratory burst of human neutrophils: dependence on extimeeUular matrix proteins and CD11/CD18 integrals. J Cell Biol 1989; 109: 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  58. Mercer Jones MA, Heinielmann M, Peyton JC, et al: Inhibition of neutrophil migration at the site of infection increases remote organ neutrophil sequestration and injury. Shock 1997; 8: 193–199.

    Article  PubMed  CAS  Google Scholar 

  59. Mileski W, Harlan J, Rice C, Winn R: Streptococcus pneumo-niae-stimulated macrophages induce neutrophils to emigrate by a CD18-independent mechanism of adherence. Circ Shock 1990; 31: 259–267.

    PubMed  CAS  Google Scholar 

  60. Winn RK, Harlan JM: CD18-independent neutrophil and mononuclear leukocyte emigration into the peritoneum of rabbits. J Clin Invest 1993; 92: 1168–1173.

    Article  PubMed  CAS  Google Scholar 

  61. Doerschuk CM, Winn RK, Coxson HO, et al: CD18-dependent and independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol 1990; 144: 2327–2333.

    PubMed  CAS  Google Scholar 

  62. Holness C, Simmons DL: Structural motifs for recognition and adhesion in members of the immunoglobulin superfamily. J Cell Sci 1994; 107: 2065–2070.

    PubMed  CAS  Google Scholar 

  63. Breider MA: Endothelium and inflammation. J Am Vet Med Assoc 1993; 203: 300–306.

    PubMed  CAS  Google Scholar 

  64. Acevedo A, del Pazo MA, Arrayo AG, et al: Distribution of ICAM-3 bearing cells in normal human tissues: expression of a novel counter-receptor for LFA-1 in epidermal Langerhans cells. AmJ Pathol 1993; 143: 774–783.

    CAS  Google Scholar 

  65. Bullard DC, Qin L, Lorenzo I, et al: P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J Clin Invest 1995; 95: 1782–1788.

    Article  PubMed  CAS  Google Scholar 

  66. Essani NA, Fisher MA, Farhood A, et al: Cytokine-in-duced hepatic intercellular adhesion molecule-1 (ICAM-1) mRNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure. Hepatology 1995; 21: 1632–1639.

    PubMed  CAS  Google Scholar 

  67. VanMourik JA, Leeksma OC, Reinders JH, et al: Vascular endothelial cells synthesize a plasma membrane protein indistinguishable from platelet membrane glycoprotein Ha. J Biol Chem 1985; 260: 11300–11306.

    PubMed  Google Scholar 

  68. Albelda SM, Oliver PD, Romer LH, et al: EndoCAM: a novel endothelial cell-cell adhesion molecule. J Cell Biol 1990; 110: 1227–1237.

    Article  PubMed  CAS  Google Scholar 

  69. Newman PJ: The role of PECAM-1 in vascular cell biology. In: Fitigerald GA, Jennings LK, Patrono C (ed) Platelet-Dependent Vascular Occlusion. New York, New York Academy of Sciences 1994; 165–174.

    Google Scholar 

  70. Newman PJ: The biology of PECAM-1. J Clin Invest 1997; 99: 3–8.

    Article  PubMed  CAS  Google Scholar 

  71. Muller WA, Weigl SA, Deng X, et al: PEGAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178: 449–460.

    Article  PubMed  CAS  Google Scholar 

  72. Vaporciyan AA, DeLisser HM, Yan H, et al: Involvement of platelet endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 1993; 262: 1580–1582.

    Article  PubMed  CAS  Google Scholar 

  73. Murohara T, Delyani SM, Albelda SM, et al: Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia reperfusion injury in cats. J Immunol 1996; 156: 3550–3557.

    PubMed  CAS  Google Scholar 

  74. Gumina RJ, Schultz J, Yao Z, et al: Antibody to platelet-endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation 1996; 94: 3327–3333.

    Article  PubMed  CAS  Google Scholar 

  75. Ruegg C, Postigo AA, Sikorski EE, et al: Role of integrin α4β7/ α4βp in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Biol 1992; 117: 179–189.

    Article  PubMed  CAS  Google Scholar 

  76. Zimmerman GA, Prescott SM, McIntyre TM: Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today 1992; 13: 93–100.

    Article  PubMed  CAS  Google Scholar 

  77. Steinhoff G, Behrend M, Schrader B, et al: Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Am J Pathol 1993; 42: 481–488.

    Google Scholar 

  78. Kreigsmann J, Keyszer GM, Geiler TG, et al: Expression of vascular cell adhesion molecule-1 mRNA and protein in rheumatoid synovium demonstrated by in situ hybridization and immunohistochemistry. Lab Invest 1995; 72: 209–214.

    Google Scholar 

  79. Sasseville VG, Newman WA, Lackner AA, et al: Elevated vascular cell adhesion molecule-1 in AIDS encephalitis induced by simian immunodeficiency virus. Am J Pathol 1992; 141: 1021–1030.

    PubMed  CAS  Google Scholar 

  80. Tedder TF, Steeper DA, Pizcueta P: L-selectin deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 1995; 181: 2259–2264.

    Article  PubMed  CAS  Google Scholar 

  81. Malhotra R, Priest R, Bird MI: Role of L-selectin in lipopoly-saccharide-induced activation of neutrophils. Biochem J 1996; 320: 589–593.

    PubMed  CAS  Google Scholar 

  82. Malhotra R, Bird MI: L-selectin: a novel receptor for lipopoly-saccharide and its potential role in bacterial sepsis. Bioessays 1997; 19: 919–923.

    Article  PubMed  CAS  Google Scholar 

  83. Ramos CL, Kunkel EJ, Lawrence MB, et al: Differential effect of E-selectin antibodies on neutrophil rolling and recruitment to inflammatory sites. Blood 1997; 89: 3009–3018.

    PubMed  CAS  Google Scholar 

  84. Zhang Z, Vuori K, Reed JC, et al: The α5β1 integrin supports survival of cells on fibronectin and upregulates Bcl-2 expression. Proc Natl Acad Sci USA 1995; 92: 6161–6165.

    Article  PubMed  CAS  Google Scholar 

  85. Seftor REB, Seftor EA, Gehlsen KR, et al: Role of the αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 1992; 89: 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  86. Ruoslahti E: Integrins as signaling molecules and targets for tumor therapy. Kidney Int 1997; 51: 1413–1417.

    Article  PubMed  CAS  Google Scholar 

  87. Zehnder JL, Shatsky M, Leung LLK, et al: Involvement of CD31 in lymphocyte-mediated immune responses: importance of the membrane-proximal immunoglobulin domain and identification of an inhibiting CD31 peptide. Blood 1995; 85: 1282–1288.

    PubMed  CAS  Google Scholar 

  88. Behar E, Chao NJ, Hirake DD, et al: Polymorphism of adhesion molecule CD31 and its role in acute graft-versus-host disease. N Engl J Med 1996; 334: 286–291.

    Article  PubMed  CAS  Google Scholar 

  89. Bagglioni M: Chemotactic and inflammatory cytokines-C-X-C and CC proteins. In: Lindley IJD, Westwick J, Kunkel S (eds) The Chemokines: Biology of the Inflammatory Peptide Supergene Family II, New York, Plenum, 1993; 1–18.

    Google Scholar 

  90. Haskill S, Peace A, Morris J, et al: Identification of three related human GRO genes encoding cytokine functions. Proc Natl Acad Sci USA 1990; 87: 7732–7736.

    Article  PubMed  CAS  Google Scholar 

  91. Wolpe SD, Sherry B, Juers D, et al: Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci USA 1989; 86: 612–616.

    Article  PubMed  CAS  Google Scholar 

  92. Cochran BH, Reffel AC, Stiles CD: Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 1983; 33: 939–947.

    Article  PubMed  CAS  Google Scholar 

  93. Wuyts A, Haelens A, Proost P, et al: Identification of mouse granulocyte chemotactic protein-2 from fibroblasts and epithelial cells. J Immunol 1996; 157: 1736–1743.

    PubMed  CAS  Google Scholar 

  94. Shibata F, Kato H, Konishi K, et al: Differential changes in the concentrations of cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-2 in exudate during lipopolysaccharide-induced inflammation. Cytokine 1996; 8: 222–226.

    Article  PubMed  CAS  Google Scholar 

  95. Tanaka Y, Adams DH, Shaw S: Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today 1993; 14: 111–115.

    Article  PubMed  CAS  Google Scholar 

  96. Fevert CW, Huang S, Danaee H, et al: Functional characterization of the rat chemoMne KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation. J Immunol 1995; 154: 335–344.

    Google Scholar 

  97. Jaeschke H: Reactive oxygen and ischaemia-reperfusion injury of the Ever. Chem Biol Interact 1991; 79: 115–136.

    Article  PubMed  CAS  Google Scholar 

  98. Mavier P, Preaux AM, Guigui B, et al: In vitro toxicity of polymorphonuclear neutrophils to rat hepatocytes: evidence for a proteinase-mediated mechanism. Hepatology 1988; 8: 254–258.

    Article  PubMed  CAS  Google Scholar 

  99. Mercer-Jones MA, Shrotri MS, Peyton JC, et al: Neutrophil sequestration in Ever and lung is differentially regulated by C-X-C chemoHnes during experimental peritonitis. Inflammation 1999; 23: 305–319.

    PubMed  CAS  Google Scholar 

  100. Mercer-Jones MA, Shrotri MS, Heinzelmann M, et al: Regulation of peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 1999; 65: 249–255.

    PubMed  CAS  Google Scholar 

  101. Zhang P, Xie M, Spiteer JA: Hepatic neutrophil sequestration in early sepsis: enhanced egression of adhesion molecules and phagocytic activity. Shock 1994; 2: 133–140.

    Article  PubMed  CAS  Google Scholar 

  102. Dahinden CA, Kurimoto Y, De Week AL, et al: The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J Exp Med 1989; 170: 1787–1792.

    Article  PubMed  CAS  Google Scholar 

  103. Malaviya R, Ikeda T, Ross E, et al: Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-a. Nature 1996; 381: 77–80.

    Article  PubMed  CAS  Google Scholar 

  104. Zhang Y, Ramos BF, Jakshick BA: Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 1992; 258: 1957–1959.

    Article  PubMed  CAS  Google Scholar 

  105. Parenteau GL, Clark RE: Prevention of ischemia-reperfusion injury by the allergy drug lodoxamide tromethamine. Ann Thorac Surg 1992; 52: 832–838.

    Article  Google Scholar 

  106. Harlan JM: Leukocyte adhesion deficiency syndrome: insight into the molecular basis of leukocyte emigration. Clin Immunol Immunopathol 1993; 69: S16–S24.

    Article  Google Scholar 

  107. Etzioni A, Frydman M, Pollack S, et al: Severe recurrent chest infections due to a novel adhesion molecule defect. N Engl J Med 1992; 327: 1789–1792.

    Article  PubMed  CAS  Google Scholar 

  108. Etzioni A, Phillips LM, Paulson JC, et al: Leukocyte adhesion deficiency (LAD) II. Ciba Found Symp 1995; 189: 51–62.

    PubMed  CAS  Google Scholar 

  109. Dana N, Todd RF III, Pitt J, et al: Deficiency of a surface membrane glycoprotein (Mol) in man. J Clin Invest 1984; 73: 153–159.

    Article  PubMed  CAS  Google Scholar 

  110. Anderson DC, Schmalstieg FC, Finegold MJ, et al: The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis 1985; 152: 668–689.

    Article  PubMed  CAS  Google Scholar 

  111. Anderson DC, Springer TA: Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 1987; 38: 175–194.

    Article  PubMed  CAS  Google Scholar 

  112. Crowley CA, Curnutte JT, Rosin RE, et al: An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with a missing protein. N Engl J Med 1980; 302: 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  113. Beller DI, Springer TA, Schreiber RD: Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 1982; 156: 1000–1009.

    Article  PubMed  CAS  Google Scholar 

  114. Springer TA, Dustin ML, Kishimoto TK, et al: The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 1987; 5: 223–252.

    Article  PubMed  CAS  Google Scholar 

  115. Fisher CJ, Opal SM, Dhainaut JF, et al: Influence of an antitumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. Crit Care Med 1993; 21: 318–327.

    Article  PubMed  Google Scholar 

  116. Abraham E, Wunderink R, Silverman H, et al: Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome: a randomized, controlled, double blind multicentric clinical trial. JAMA 1995; 273: 934–941.

    Article  PubMed  CAS  Google Scholar 

  117. Fisher CJ, Dhainaut JF, Opal SM, et al: Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. JAMA 1994; 271: 1836–1843.

    Article  PubMed  Google Scholar 

  118. Denz H: Soluble TNF receptors. In: Faist E, Baue AE, Schildberg FW (eds) The Immune Consequences of Trauma, Shock and Sepsis: Mechanisms and Therapeutic Approaches, vol II. Berlin, Pabst Science, 1996; 155–157.

    Google Scholar 

  119. Chaudry IH, Ayala A, Ertel W, et al: Hemorrhage and resuscitation: immunological aspects. Am J Physiol 1990; 259: R663–R678

    PubMed  CAS  Google Scholar 

  120. Schmand JF, Ayala A, Morrison MH, et al: Effects of hydroxyethyl starch after trauma hemorrhagic shock: restoration of macrophage integrity and prevention of increased circulating interleukin-6 levels. Grit Care Med 1995; 23: 806–814.

    Article  CAS  Google Scholar 

  121. Fabian TC, Croce MA, Fabian MJ, et al: Reduced tumor necrosis factor production in endotoxin-spiked whole blood after trauma: experimental results and clinical correlation. Surgery 1995; 118: 63–72.

    Article  PubMed  CAS  Google Scholar 

  122. Faist E, Kupper TS, Baker CC, et al: Depression of cellular immunity after major injury: its association with posttraumatic complications and its reversal with immunomodulation. Arch Surg 1986; 121: 1000–1005.

    Article  PubMed  CAS  Google Scholar 

  123. Polk HC Jr, Cheadle WG, Livingston DH, et al: A randomized prospective clinical trial to determine the efficacy of interferon-gamma in severely injured patients. Am J Surg 1992; 163: 191–196.

    Article  PubMed  Google Scholar 

  124. Debets JM, Kampmeijer R, van der Linden MP, et al: Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med 1989; 17: 489–494.

    Article  PubMed  CAS  Google Scholar 

  125. Rogy MA, Coyle SM, Oldenburg HS, et al: Persistently elevated soluble tumor necrosis factor receptor and interleukin-1 receptor antagonist levels in critically ill patients. J Am Coll Surg 1994; 178: 132–138.

    PubMed  CAS  Google Scholar 

  126. Hadjiminas DJ, McMasters KM, Peyton JC, Cheadle WG: Tissue tumor necrosis factor mRNA expression following cecal ligation and puncture or intraperitoneal injection of endotoxin. J Surg Res 1994; 56: 549–555.

    Article  PubMed  CAS  Google Scholar 

  127. Dhainaut JF, Tenaillon A, Le Tulzo Y, et al: Platelet-activation factor receptor antagonist BN52021 in the treatment of severe sepsis: a randomized, double-blinded, placebo-controlled, multicenter clinical trial. Crit Care Med 1994; 22: 1720–1728.

    PubMed  CAS  Google Scholar 

  128. Gortech News Release: Phase II Bradycor Trial Does Not Show Clinically Meaningful Reduction of 28-Day Mortality in Sepsis. Denver, Gortech, 1994.

    Google Scholar 

  129. Ismail G, Morganroth ML, Todd RF, et al: Prevention of pulmonary injury in isolated perfused rat lungs by activated human neutrophils preincubated with anti-Mo1 monoclonal antibody. Blood 1987; 69: 1167–1174.

    PubMed  CAS  Google Scholar 

  130. Vedder NB, Fouty BW, Winn RK, et al: Role of neutrophils in generalized reperfusion injury associated with resuscitation from shock. Surgery 1989; 106: 509–516.

    PubMed  CAS  Google Scholar 

  131. Mileski WJ, Winn RK, Vedder NB, et al: Inhibition of CD18-dependent neutrophil adherence reduces organ injury after hemorrhagic shock in primates. Surgery 1990; 108: 206–212.

    PubMed  CAS  Google Scholar 

  132. McCandless BK, Kaufman RP, Cooper JA, et al: Mediation of lung neutrophil uptake after endotoxin by CD18-integrin-depen-dent and-independent mechanisms. Am J Physiol 1994; 266: H1451–H1456.

    PubMed  CAS  Google Scholar 

  133. Morisaki T, Goya T, Toh H, et al: The anti Mac-1 monoclonal antibody inhibits neutrophil sequestration in lung and liver in a septic murine model. Clin Immunol Immunopathol 1991; 61: 365–375.

    Article  PubMed  CAS  Google Scholar 

  134. Ridings PC, Windsor ACJ, Jutila MA, et al: A dual-binding antibody to E-and L-selectin attenuates sepsis-induced lung injury. Am J Respir Crit Care Med 1995; 152: 247–253.

    Article  PubMed  CAS  Google Scholar 

  135. Walsh CJ, Carey PD, Cook DJ, et al: Anti-CD18 antibody attenuates neutropenia and alveolar capillary-membrane injury during gram-negative sepsis. Surgery 1991; 110: 205–212.

    PubMed  CAS  Google Scholar 

  136. Sharar SR, Winn RK, Murry CE, et al: A CD18 monoclonalantibody increaies die incidence and severity of subcutaneous abscess formation after high-dose Staphylococcus aureus injection in rabbits. Surgery 1991; 110: 213–220.

    PubMed  CAS  Google Scholar 

  137. Garcia N, Mileski WJ, Iipsky P: Differential effects of monoclonal antibody blockade of adhesion molecules on in vivo susceptibility to soft tissue infection. Infect Immun 1995; vn63: 3816–3819.

    Google Scholar 

  138. Eiehaeker PQ, Hoffman WD, Farese A, et al: Leukocyte CD18 monoclonal antibody worsens endotoxemia and cardiovascular injury in canines with septic shock. J Appl Physiol 1993; 74: 1885–1892.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shrotri, M.S., Peyton, J.C., Cheadle, W.G. (2000). Leukocyte—Endothelial Cell Interactions: Review of Adhesion Molecules and Their Role in Organ Injury. In: Baue, A.E., Faist, E., Fry, D.E. (eds) Multiple Organ Failure. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1222-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1222-5_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7049-2

  • Online ISBN: 978-1-4612-1222-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics