Advertisement

Extremes of alpha-ARCH Models

  • Christian Robert
Part of the Lecture Notes in Statistics book series (LNS, volume 147)

Abstract

In the recent literature there has been a growing interest in nonlinear time series models. Many of these models were introduced to describe the behavior of financial returns. Large changes tend to be followed by large changes and small changes by small changes (see Mandelbrot (1963)). These observations lead to models of the form X t = σ t ε t , where the conditional variance depends on past information.

Keywords

Stationary Distribution Stochastic Volatility Price Variation Stochastic Volatility Model Extremal Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Beirlant, J., Broniatowski, M., Teugels, J. and Vynckkier, P. (1995). The mean residual life function at great age: Applications to tails estimation, J. Stat. Plann. Inf 45: 21–48.zbMATHCrossRefGoogle Scholar
  2. Bollerslev, T. (1986). Generalized autoregressive conditional heterosce-dasticity, J. Econometrics 31: 307–327.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bollerslev, T., Chou, R. and Kroner, K. (1992). Arch modelling in finance, J. Econometrics 52: 5–59.zbMATHCrossRefGoogle Scholar
  4. Borkovec, M. (1999). Extremal behavior of the autoregressive process with arch(1) errors, Technical report, University of München.Google Scholar
  5. Breidt, F. and Davis, R. (1998). Extremes of stochastic volatility models, Ann. Appl. Probab 8: 664–675.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Cont, R., Potters, M. and Bouchaud, J. (1997). Scaling in stock market data: Stable law and beyond, in D. et al. (ed.), Scale Invariance and Beyond, Springer, Berlin.Google Scholar
  7. Davis, R., Mikosch, T. and Basrak, C. (1999). Sample acf of stochastic recurrence equations with application to garch, Technical report, University of Groningen.Google Scholar
  8. Diebolt, J. and Guegan, D. (1991). Le modèle de série chronologique autorégressive β-arch, Acad. Sci. Paris 312: 625–630.MathSciNetzbMATHGoogle Scholar
  9. Embrechts, P., C., K. and Mikosch, T. (1997). Modelling Extremal Events, Springer, Berlin.zbMATHGoogle Scholar
  10. Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation, Econometrica 50: 987–1008.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Gourieroux, C. (1997). ARCH Models and Financial Applications, Springer, Berlin.zbMATHCrossRefGoogle Scholar
  12. Gourieroux, C., Jasiak, J. and Le Fol, G. (1999). Intraday market activity, Journal of Financial Markets 2: 193–226.CrossRefGoogle Scholar
  13. Haan, L. D., Resnick, S., Rootzen, H. and Vries, C. D. (1989). Extremal behaviour of solutions to a stochastic difference equation with application to arch processes, Stoch. Proc Appl. 32: 213–224.zbMATHCrossRefGoogle Scholar
  14. Leadbetter, M., Lindgren, G. and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes, Springer, Berlin.zbMATHCrossRefGoogle Scholar
  15. Leadbetter, M. and Rootzen, H. (1988). Extremal theory for stochastic processes, Ann. Probab. 16: 431–478.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Mandelbrot, B. (1963). The variation of certain speculative prices, J. Business 36: 394–419.CrossRefGoogle Scholar
  17. Mikosch, T. and Starica, C. (1998). Limit theory for the sample autocorrelations and extremes of a garch(1,1) process, Technical report, University of Groningen.Google Scholar
  18. Perfect, C. (1994). Extremal behavior of stationary markov chains with applications, Ann. Appl. Probab 4: 529–548.MathSciNetCrossRefGoogle Scholar
  19. Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes, Springer, Berlin.zbMATHGoogle Scholar
  20. Robert, C. (2000). Mouvement extrêmes des séries financières haute fréquence, Finance.Google Scholar
  21. Smith, R. and Weismann, L. (1994). Estimating the extremal index, Journal of the Royal Statistical Society B 56: 515–528.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Christian Robert

There are no affiliations available

Personalised recommendations