Skip to main content

On the Bifurcation from Continuous to Segmented Chip Formation in Metal Cutting

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 119))

Abstract

We describe a new approach to modeling chip formation in orthogonal machining. Metal cutting is interpreted as a nonlinear dynamical process with thermo-mechanical feedback, that is similar in many ways to an open chemical reactor. As the cutting speed is increased, there is a bifurcation from steady-state to periodic oscillatory behavior in the stress and temperature fields in the workpiece material at the tooltip, which explains the observed change from continuous to segmented chip formation. We argue that this change in behavior corresponds to a singular Poincaré-Andronov-Hopf bifurcation in the material flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Baer and T. Erneux, Singular hopf bifurcation to relaxation oscillations, SIAM J. Appl. Math. 46 (1986), pp. 721–739.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. M. Baer and T. Erneux, Singular hopf bifurcation to relaxation oscillations II, SIAM J. Appl. Math. 52 (1992), pp. 1651–1664.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. W. Bebernes and D. H. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

  4. T. J. Burns, Approximate linear stability analysis of a model of adiabatic shear band formation, Quart. Appl. Math., 43 (1985), pp. 65–84.

    MathSciNet  MATH  Google Scholar 

  5. T. J. Burns, A mechanism for shear band formation in the high strain-rate torsion test, Trans. ASME Journal of Applied Mechanics 57 (1990), pp. 836–844.

    Article  Google Scholar 

  6. T. J. Burns, On a combustion-like model for plastic strain localization, Shock Induced Transitions and Phase Structures in General Media, R. Fosdick, et al. (eds.), Springer-Verlag, New York, 1992, Ch. 2.

    Google Scholar 

  7. T. J. Burns, A simple criterion for the onset of discontinuous plastic deformation in metals at very low temperatures, J. Mech. Phys. Solids 42 (1994), pp. 797–811.

    Article  MATH  Google Scholar 

  8. T. J. Burns and M. A. Davies, Nonlinear dynamics model for chip segmentation in machining, Phys. Rev. Lett. 79 (1997), pp. 447–450.

    Article  Google Scholar 

  9. M. A. Davies, Y. Chou and C. J. Evans, On chip morphology tool wear and cutting mechanics in finish hard turning, Annals of the CIRP 45 (1996), pp 77–82.

    Article  Google Scholar 

  10. M. A. Davies, T. J. Burns and C. J. Evans, On the dynamics of chip formation in machining hard metals, Annals of the CIRP 46 (1997), pp. 25–30.

    Article  Google Scholar 

  11. M. A. Davies, T. J. Burns and C. J. Evans, The dynamics of chip formation in machining. In Proceedings of IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, F. C. Moon (ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, (1999), pp. 183–192.

    Chapter  Google Scholar 

  12. E. J. Doedel, AUTO, a program for the automatic bifurcation analysis of autonomous systems, Cong. Numer. 30 (1981), pp. 265–384.

    MathSciNet  Google Scholar 

  13. W. Eckhaus, Relaxation oscillations including a standard chase on French ducks, in Lecture Notes in Mathematics, Vol. 985, F. Verhulst (ed.), (1983), pp. 449–494.

    Google Scholar 

  14. A. M. Eleiche, Strain-rate history and temperature effects on the torsional-shear behavior of a mild steel, Experimental Mech. (1981) 21, pp. 285–294.

    Article  Google Scholar 

  15. Y. Estrin and L. P. Kubin, Criterion for thermomechanical instability of low temperature plastic deformation, Scripta Metallurgica 14 (1980), pp. 1359–1364.

    Article  Google Scholar 

  16. H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates, J. Chem. Phys. 4 (1936), pp. 283–291.

    Article  Google Scholar 

  17. P. Gray and S. K. Scott, Chemical Oscillations and Instabilities, Clarendon Press, Oxford, 1994.

    Google Scholar 

  18. A. K. Kapila, Asymptotic Treatment of Chemically Reacting Systems, Pitman Publishing, London, 1983.

    Google Scholar 

  19. D. R. Kassoy, Extremely rapid transient phenomena in combustion, ignition and explosion. In Asymptotic Methods and Singular Perturbations, SIAM-AMS Proceedings, Vol. 10, R. E. O’Malley, Jr. (ed.), (1976), pp. 61–72.

    Google Scholar 

  20. U. F. Kochs, A. S. Argon, and M. F. Ashby, Thermodynamics and Kinetics of Slip, Progress in Materials Science, Vol. 19, B. Chalmers, et al. (eds.), Pergamon Press, Oxford, U.K., 1975.

    Google Scholar 

  21. R. Komanduri, J. Schroeder, B. F. Von TURKOVICH, and D. G. Flom, On the catastrophic shear instability in high-speed machining of an AISI 4340 steel, Trans. ASME Journal of Engineering for Industry 104 (1982), pp. 121–131.

    Article  Google Scholar 

  22. A. Marchand and J. Duffy, An experimental study of the formation of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36 (1988), pp. 251–283.

    Article  Google Scholar 

  23. T. D. Marusich and M. Ortiz, Modelling and simulation of high-speed machining, Int. J. Num. Meth. Eng. 38 (1995), pp. 3675–3694.

    Article  MATH  Google Scholar 

  24. M. E. Merchant, Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip, J. Appl. Phys. 16 (1945), pp. 267–275.

    Article  Google Scholar 

  25. A. Molinari and D. Dudzinski, Stationary shear band in high-speed machining, C. R. Acad. Sci. Paris Ser. II 315, 399 (1992).

    MATH  Google Scholar 

  26. P. L. B. Oxley, The Mechanics of Machining: An Analytical Approach to Assessing Machinability, Ellis Horwood Limited, Chichester, England, 1989.

    Google Scholar 

  27. R. F. Recht, Catastrophic thermoplastic shear, Trans. ASME Journal of Applied Mechanics 31 (1964), pp. 189–193.

    Article  Google Scholar 

  28. M. C. Shaw, Metal Cutting Principles, Oxford Univ. Press, 1984.

    Google Scholar 

  29. T. G. Shawki and R. J. Clifton, Shear band formation in thermal viscoplastic meterials, Mechanics of Materials 8, 13–43 (1989).

    Article  Google Scholar 

  30. E. M. Trent, Metal Cutting, n3rd ed., Butterworth-Heinemann, Oxford, 1991.

    Google Scholar 

  31. T. W. Wright and R. C. Batra, The initiation and growth of adiabatic shear bands, Int. J. Plasticity 1 (1985), pp. 205–212.

    Article  Google Scholar 

  32. T. W. Wright and J. W. Walter, On stress collapse in adiabatic shear bands, J. Mech. Phys. Solids 35 (1987), pp. 701–720.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Burns, T.J., Davies, M.A., Evans, C.J. (2000). On the Bifurcation from Continuous to Segmented Chip Formation in Metal Cutting. In: Doedel, E., Tuckerman, L.S. (eds) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. The IMA Volumes in Mathematics and its Applications, vol 119. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1208-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1208-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7044-7

  • Online ISBN: 978-1-4612-1208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics