Skip to main content

Thermodynamics of Moser—Calogero Potentials and Seiberg—Witten Exact Solution

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 723 Accesses

Abstract

We describe a recent attempt to compute thermodynamics for classical Moser—Calogero particles. Our approach is based on the description of the Gibbs states in the action-angle coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys. 168 (1994), No. 1, 1–26.

    Article  MathSciNet  ADS  Google Scholar 

  2. R. L. Dobrushin, Ya. G. Sinai, and Yu. M. Suhov, Dynamical systems of statistical mechanics, Dynamical systems. II. Ergodic theory with applications to dynamical systems and statistical mechanics (Ya. G. Sinai, ed.), Encyclopaedia Math. Sci., Springer, Berlin, 1989, pp. 208–253.

    Google Scholar 

  3. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996), No. 2, 299–334.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. I. M. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980), No. 4, 282–290.

    Article  MathSciNet  Google Scholar 

  5. I. M. Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Caloger-Moser system and the matrix KP equation, Topics in Topology and Mathematical Physics (A. B. Sossinsky, ed.), Amer. Math. Soc. Transi. Ser. 2, Vol. 170, Amer. Math. Soc, Providence, RI, 1995, pp. 83–119, hep-th/9411160.

    Google Scholar 

  6. I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Differential Geom. 45 (1997), No. 2, 349–389.

    MathSciNet  MATH  Google Scholar 

  7. H. P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Commun. Math. Phys. 168 (1995), No. 3, 479–491.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H. P. McKean, Trace formulas and the canonical 1-form, Algebraic Aspects of Integrable Systems (A. S. Fokas and I. M. Gelfand, eds.), Progr. Nonlinear Differential Equations Appl., Vol. 26, Birkhäuser, Boston, MA, 1996, pp. 217–235.

    Google Scholar 

  9. H. P. McKean and K. L. Vaninsky, Statistical mechanics of nonlinear wave equations, Trends and Perspectives in Applied Mathematics (L. Sirovich, ed.), Appl. Math. Sci., Vol. 100, Springer, New York, 1994, pp. 239–264.

    Google Scholar 

  10. H. P. McKean and K. L. Vaninsky, Action-angle variables for nonlinear Schrödinger equation, Commun. Pure Appl. Math. 50 (1997), No. 6, 489–562.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. P. McKean and K. L. Vaninsky, Cubic Schrödinger: the petit canonical ensemble in action-angle variables, Commun. Pure Appl. Math. 50 (1997), No. 7, 593–622.

    Article  MathSciNet  Google Scholar 

  12. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994), No. 1, 19–52, Errata, 430 (1994), no. 2, 485-486.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. K. L. Vaninsky, Invariant Gibbsian measures of the Klein-Gordon equation, Stochastic analysis (Ithaca, NY, 1993) (edM. C. Cranston and M. A. Pinsky, eds.), Proc. Sympos. Pure Math., Vol. 57, Amer. Math. Soc, Providence, RI, 1995, pp. 495–510.

    Google Scholar 

  14. K. L. Vaninsky, Gibbs states for Moser-Calogero potentials, Internat. J. Modern Phys. B 11 (1997), No. 1-2, 203–211, solv-int/9607008.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K. L. Vaninsky, Symplectic structures and volume elements in the function space for the cubic Schrödinger equation, Duke Math. J. 92 (1998), No. 2, 381–402.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. L. Vaninsky, Trace formula for a system of particles with elliptic potential, 1999.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaninsky, K.L. (2000). Thermodynamics of Moser—Calogero Potentials and Seiberg—Witten Exact Solution. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics