Thermodynamics of Moser—Calogero Potentials and Seiberg—Witten Exact Solution

  • K. L. Vaninsky
Part of the CRM Series in Mathematical Physics book series (CRM)


We describe a recent attempt to compute thermodynamics for classical Moser—Calogero particles. Our approach is based on the description of the Gibbs states in the action-angle coordinates.


Entropy Soliton Posit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys. 168 (1994), No. 1, 1–26.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. L. Dobrushin, Ya. G. Sinai, and Yu. M. Suhov, Dynamical systems of statistical mechanics, Dynamical systems. II. Ergodic theory with applications to dynamical systems and statistical mechanics (Ya. G. Sinai, ed.), Encyclopaedia Math. Sci., Springer, Berlin, 1989, pp. 208–253.Google Scholar
  3. 3.
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996), No. 2, 299–334.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    I. M. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980), No. 4, 282–290.MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. M. Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Caloger-Moser system and the matrix KP equation, Topics in Topology and Mathematical Physics (A. B. Sossinsky, ed.), Amer. Math. Soc. Transi. Ser. 2, Vol. 170, Amer. Math. Soc, Providence, RI, 1995, pp. 83–119, hep-th/9411160.Google Scholar
  6. 6.
    I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Differential Geom. 45 (1997), No. 2, 349–389.MathSciNetMATHGoogle Scholar
  7. 7.
    H. P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Commun. Math. Phys. 168 (1995), No. 3, 479–491.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    H. P. McKean, Trace formulas and the canonical 1-form, Algebraic Aspects of Integrable Systems (A. S. Fokas and I. M. Gelfand, eds.), Progr. Nonlinear Differential Equations Appl., Vol. 26, Birkhäuser, Boston, MA, 1996, pp. 217–235.Google Scholar
  9. 9.
    H. P. McKean and K. L. Vaninsky, Statistical mechanics of nonlinear wave equations, Trends and Perspectives in Applied Mathematics (L. Sirovich, ed.), Appl. Math. Sci., Vol. 100, Springer, New York, 1994, pp. 239–264.Google Scholar
  10. 10.
    H. P. McKean and K. L. Vaninsky, Action-angle variables for nonlinear Schrödinger equation, Commun. Pure Appl. Math. 50 (1997), No. 6, 489–562.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    H. P. McKean and K. L. Vaninsky, Cubic Schrödinger: the petit canonical ensemble in action-angle variables, Commun. Pure Appl. Math. 50 (1997), No. 7, 593–622.MathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994), No. 1, 19–52, Errata, 430 (1994), no. 2, 485-486.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    K. L. Vaninsky, Invariant Gibbsian measures of the Klein-Gordon equation, Stochastic analysis (Ithaca, NY, 1993) (edM. C. Cranston and M. A. Pinsky, eds.), Proc. Sympos. Pure Math., Vol. 57, Amer. Math. Soc, Providence, RI, 1995, pp. 495–510.Google Scholar
  14. 14.
    K. L. Vaninsky, Gibbs states for Moser-Calogero potentials, Internat. J. Modern Phys. B 11 (1997), No. 1-2, 203–211, solv-int/9607008.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    K. L. Vaninsky, Symplectic structures and volume elements in the function space for the cubic Schrödinger equation, Duke Math. J. 92 (1998), No. 2, 381–402.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    K. L. Vaninsky, Trace formula for a system of particles with elliptic potential, 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • K. L. Vaninsky

There are no affiliations available

Personalised recommendations