Skip to main content

Two-Body Elliptic Model in Proper Variables: Lie Algebraic Forms and Their Discretizations

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 717 Accesses

Abstract

Two Lie algebraic forms of the two-body elliptic Calogero model are presented and translation-invariant and dilatation-invariant discretizations of the model are obtained.

On leave of absence from the Institute for Theoretical and Experimental Physics, Moscow 117259, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. M. Arscott, Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions, International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Macmillan, New York, 1964.

    Google Scholar 

  2. L. Brink, A. V. Turbiner, and N. Wyllard, Hidden algebras of the (super) Calogero and Sutherland models, J. Math. Phys. 39 (1998), No. 3, 1285–1315.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. H. Exton, q-Hypergeometrical Functions and Applications, Ellis Hor-wood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1983.

    Google Scholar 

  4. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia Math. Appl., Vol. 35, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  5. E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. I. Gewöhnliche Differentialgleichungen, Mathematik und ihre Anwendungen in Physik und Technik, Vol. 18, Geest & Portig, Leipzig, 1959.

    Google Scholar 

  6. O. Ogievetsky and A. V. Turbiner, sl(2,ℝ)q and quasi-exactly-solvable problems, preprint CERN-TH: 6212/91, CERN, 1991.

    Google Scholar 

  7. M. A. Olshanetsky and A. M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983), No. 6, 313–404.

    Article  MathSciNet  ADS  Google Scholar 

  8. A. M. Perelomov, Algebraic approach to the solution of a one-dimensional model of N interacting particles, Theoret, and Math. Phys. 6 (1971), 263–282.

    Article  MathSciNet  ADS  Google Scholar 

  9. W. Rühl and A. Turbiner, Exact solvability of the Calogero and Sutherland models, Modern Phys. Lett. AIO (1995), No. 29, 2213–2221.

    Google Scholar 

  10. Y. F. Smirnov and A. V. Turbiner, Lie algebraic discretization of differential equations, Modern Phys. Lett. AIO (1995), No. 24, 1795–1802, Errata, no. 40, 3139.

    Google Scholar 

  11. Y. F. Smirnov and A. V. Turbiner, Hidden sh-algebra of finite-difference equations, Proceedings of the IV Wigner Symposium (Guadalajara, 1995) (N. M. Atakishiyev, T. H. Seligman, and K. B. Wolf, eds.), World Sci. Publishing, River Edge, NJ, 1996, pp. 435–440.

    Google Scholar 

  12. A. V. Turbiner, Lamé equation, Sl2 and isospectral deformation, J. Phys. A 22 (1989), No. 1, L1–L3.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. V. Turbiner, On polynomial solutions of differential equations, J. Math. Phys. 33 (1992), No. 12, 3989–3994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. V. Turbiner, Lie algebras and linear operators with invariant subspace, Lie Algebras, Cohomologies and New Findings in Quantum Mechanics (Springfield, MO, 1992) (N. Kamran and P. J. Olver, eds.), Contemp. Math., Vol. 160, Amer. Math. Soc, Providence, RI, 1994, pp. 263–310.

    Google Scholar 

  15. A. V. Turbiner, Quasi-exactly-solvable differential equations, CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 3. New Trends in Theoretical Developments and Computational, CRC Press, Boca Raton, FL, 1996, pp. 331–366, hep-th/9409068.

    Google Scholar 

  16. P. B. Wiegmann and A. V. Zabrodin, Algebraization of difference eigenvalue equations related to U q(sl2), Nucl. Phys. B 451 (1995), No. 3, 699–724, cond-mat/9501129.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turbiner, A. (2000). Two-Body Elliptic Model in Proper Variables: Lie Algebraic Forms and Their Discretizations. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics