Skip to main content

Painlevé—Calogero Correspondence

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

It is proved that the Painlevé VI equation PVIα,β,γ,δ for the special values of constants \(\alpha = {\nu ^2}/4,\,\beta = - {\nu ^2}/4,\,\gamma = {\nu ^2}/4,\,\delta = {1 \over 2} - {\nu ^2}/4\) is a reduced Hamiltonian system. Its phase space is the set of flat SL(2, ℂ) connections over elliptic curves with a marked point, and time of the system is given by the elliptic module. This equation can be derived via reduction procedure from the free infinite Hamiltonian system. The phase space of the latter is the affine space of smooth connections, and the times are the Beltrami differentials. This approach allows us to define the associate linear problem, whose isomonodromic deformations are provided by the Painlevé equation and the Lax pair. In addition, it leads to a description of solutions by a linear procedure. This scheme can be generalized to G bundles over Riemann curves with marked points, where G is a simple complex Lie group. In some special limit such Hamiltonian systems convert into the Hitchin systems. In particular, for SL bundles over elliptic curves with a marked point, we obtain in this limit the elliptic Calogero N-body system. Relations to the classical limit of the Knizhnik—Zamolodchikov—Bernard equations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Axelrod, S. Della Pietra, and E. Witten, Geometrie quantization of the Chern-Simons gauge theory, J. Differential Geom. 33 (1991), No. 3, 787–902.

    MathSciNet  MATH  Google Scholar 

  2. D. Bernard, On the Wess-Zumino-Witten models on Riemann surfaces, Nucl. Phys. B 309 (1988), No. 1, 145–174.

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Bernard, On the Wess-Zumino-Witten models on the torus, Nucl. Phys. B 303 (1988), No. 1, 77–93.

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Calogero, On a functional equation connected with integrable many-body problems, Lett. Nuovo Cimento 16 (1976), No. 3, 77–80.

    Article  MathSciNet  Google Scholar 

  5. R. Dijkgraaf, H. Verlinde, and E. Verlinde, Notes on topological string theory and 2D quantum gravity, String Theory and Quantum Gravity (Trieste, 1990) (M. Green, R. Iengo, S. Randjbar-Daemi, E. Sezgin, and H. Verlinde, eds.), World Sci. Publishing, River Edge, NJ, 1991, pp. 91–156.

    Google Scholar 

  6. B. Enriquez and V. N. Rubtsov, Hitchin systems, higher Gaudin operators and R-matrices, Math. Res. Lett. 3 (1996), No. 3, 343–357.

    MathSciNet  MATH  Google Scholar 

  7. R. Fuchs, Über lineare homogene differentialgleichungen zweiter Ordnung mit im endlich gelegne wesentlich singulären stellen, Math. Ann. 63 (1907), 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont Vintégrale générale a ses points critiques fixes, Acta Math. Ann. 33 (1910), 1–55.

    Article  MathSciNet  Google Scholar 

  9. J. Harnard, Quantum isomonodromic deformations and the Knizh-nik-Zamolodchikov equations, Symmetries and Integrability of Difference Equations (Estérel, QC, 1994) (D. Levi, L. Vinet, and P. Win-ternitz, eds.), CRM Proc. Lecture Notes, Vol. 9, Amer. Math. Soc. Providence, RI, 1996, pp. 155–161, hep-th/9511087.

    Google Scholar 

  10. N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), No. 1, 91–114.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Hitchin, Flat connections and geometric quantization, Commun. Math. Phys. 131 (1990), No. 2, 347–380.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. V. Inozemtsev, Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys. 17 (1989), No. 1, 11–17.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D. Ivanov, Knizhnik-Zamolodchikov-Bernard equations as a quantization of nonstationary Hitchin system, hep-th/9610207.

    Google Scholar 

  14. M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Physica 2D (1981), No. 3, 407–448.

    MathSciNet  ADS  Google Scholar 

  15. M. Jimbo, T. Miwa, and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function, Physica 2D (1981), No. 2, 306–352.

    MathSciNet  ADS  Google Scholar 

  16. V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247 (1984), No. 1, 83–103.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. A. Korotkin and J. A. H. Samtleben, On the quantization of isomonodromic deformations on the torus, Internat. J. Modern Phys. A 12 (1997), No. 11, 2013–2030.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. I. Krichever, The τ-function of the universal Whitham hierarchy, matrix models and topological field theories, Commun. Pure Appl. Math. 47 (1994), No. 4, 437–475.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. M. Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Caloger-Moser system and the matrix KP equation, Topics in Topology and Mathematical Physics (A. B. Sossinsky, ed.), Amer. Math. Soc. Transi. Ser. 2, Vol. 170, Amer. Math. Soc, Providence, RI, 1995, pp. 83–119, hep-th/9411160.

    Google Scholar 

  20. D. Levi and P. Winternitz (eds.), Painlevé Transcedents. Their Asymptotics and Physical Applications, NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, Plenum, New York, 1992.

    Google Scholar 

  21. Yu. I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of p 2, Tech. Report MPI-1996-114, Max-Planck-Institut für Mathematik, Bonn, 1996.

    Google Scholar 

  22. N. Nekrasov, Holomorphic bundles and many-body systems, Commun. Math. Phys. 180 (1996), No. 3, 587–603.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. K. Okamoto, Isomonodromic deformation and the Painlevé equations and the Gamier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), No. 3, 575–618.

    MathSciNet  MATH  Google Scholar 

  24. M. A. Olshanetsky and A. M. Perelomov, Explicit solutions of some completely integrable systems, Lett. Nuovo Cimento 17 (1976), No. 3, 97–101.

    Article  MathSciNet  Google Scholar 

  25. M. A. Olshanetsky and A. M. Perelomov, Explicit solutions of the Calogero models in the classical case and geodsic flows on symmetric spaces of zero curvature, Lett. Nuovo Cimento 16 (1976), No. 11, 333–339.

    Article  MathSciNet  Google Scholar 

  26. N. Yu. Reshetikhin, The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys. 26 (1992), No. 3, 167–177.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A. Treibich and J.-L. Verdier, Revêtements tangentiels et sommes de 4 nombres triangulaires, C. R. Acad. Sci. A 311 (1990), No. 1, 51–54.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levin, A.M., Olshanetsky, M.A. (2000). Painlevé—Calogero Correspondence. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics