Skip to main content

On Some Quadratic Algebras: Jucys—Murphy and Dunkl Elements

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 729 Accesses

Abstract

We study some quadratic algebras that appeared in low- dimensional topology and Schubert calculus. We introduce Jucys—Murphy elements in the braid algebra and in the pure braid group, as well as Dunkl elements in the extended affine braid group. Relationships between the Dunkl elements, Dunkl operators and Jucys-Murphy elements are described.

On leave from Steklov Mathematical Institute, St. Petersburg, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian).

    MathSciNet  Google Scholar 

  2. D. Bar-Natan, Bibliography of Vassiliev invariantsi http://www.ma.huj i.ac.il/~drorbn/VasiBib/VasiBib.html.

    Google Scholar 

  3. E. Brieskorn, Automorphic sets and braids and singularities, Braids (Santa Cruz, CA, 1986) (J. S. Birman and A. Libgober, eds.), Con-temp. Math., Vol. 78, Amer. Math. Soc, Providence, RI, 1988, pp. 45–115.

    Google Scholar 

  4. I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. 141 (1995), No. 1, 191–216.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Cherednik, Lectures on affine quantum Knizhnik-Zamolodchikov equations, quantum many body problems, Hecke algebras, and Macdon-ald theory, Lectures given at the International Institute for Advances Studies, Kyoto, Memoirs of the Mathematical Society of Japan, Vol. 1, Math. Soc. Japan, Tokyo, Kyoto, 1995, 1998.

    Google Scholar 

  6. V. G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457.

    MathSciNet  Google Scholar 

  7. V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal, Leningrad Math. J. 2 (1991), No. 4, 829–860.

    MathSciNet  Google Scholar 

  8. C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), No. 1, 167–183.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. F. Dunkl, Harmonie polynomials and peak sets of reflection groups, Geom. Dedicata 32 (1989), No. 2, 157–171.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements, and Schubert calculus, Advances in Geometry (J.-L. Brylinski, R. Brylin-ski, V. Nistor, B. Tsygan, and P. Xu, eds.), Progr. Math., Vol. 172, Birkhäuser, Boston, MA, 1999, pp. 147–182.

    Google Scholar 

  11. L. Funar, Vassiliev invariants. I. Braid groups and rational homotopy theory, Rev. Roumaine Math. Pures Appl. 42 (1997), No. 3-4, 245–272.

    MathSciNet  MATH  Google Scholar 

  12. A. J. Hahn, Quadratic algebras, Clifford algebras, and arithmetic Witt groups, Universitext, Springer, New York, 1994.

    Book  MATH  Google Scholar 

  13. G. J. Heckman, Dunkl operators, Séminaire Bourbaki. Vol. 1996/97, Astérisque, Vol. 245, Soc. Math. France, Paris, 1997, pp. 223–246.

    Google Scholar 

  14. H. Hiller, Geometry of Coxeter Groups, Res. Notes Math., Vol. 54, Pitman, Boston-London, 1982.

    Google Scholar 

  15. Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Centre de recherches mathématiques, Montréal, 1988.

    Google Scholar 

  16. A. A. Jucys, On the Young operators of symmetric groups, Litovsk. Fiz. Sb. 6 (1966), 163–180 (Russian).

    MathSciNet  Google Scholar 

  17. A. A. Kirillov, Jr., Lectures on affine Hecke algebras and Macdonald’s conjectures, Bull. Amer. Math. Soc. 34 (1997), No. 3, 351–292.

    MathSciNet  Google Scholar 

  18. A. N. Kirillov, Cauchy identities for universal Schubert polynomials, q-alg/9703047.

    Google Scholar 

  19. A. A. Kirillov, On some quadratic algebras, Tech. Report CRM-2478, Centre de recherches mathématiques, 1997.

    Google Scholar 

  20. A. N. Kirillov and T. Maeno, Bracket algebras and quantum Schubert calculus for Coxeter groups, in preparation.

    Google Scholar 

  21. A. N. Kirillov and M. Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), No. 1, 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), No. 1, 57–75.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, Braids (Santa Cruz, CA, 1986) (J. S. Birman and A. Libgober, eds.), Contemp. Math., Vol. 78, Amer. Math. Soc, Providence, RI, 1988, pp. 339–363.

    Google Scholar 

  24. T. Kohno, Vassiliev invariants and de Rham complex on the space of knots, Symplectic Geometry and Quantization (Yokohama, 1993) (Y. Maeda, H. Omori, and A. Weinstein, eds.), Contemp. Math., Vol. 179, Amer. Math. Soc, Providence, RI, 1994, pp. 123–138.

    Google Scholar 

  25. X.-S. Lin, Braid algebras, trace modules and Vassiliev invariants, preprint, 1993.

    Google Scholar 

  26. I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki. Vol. 1994/95, Astérisque, Vol. 237, Soc. Math. Prance, Paris, 1996, pp. 189–207.

    Google Scholar 

  27. G. E. Murphy, A new construction of Young’s seminormal representation of the symmetric groups, J. Algebra 69 (1981), No. 2, 287–297.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Ram, Seminormal representations of Weyl groups and Iwa-hori-Hecke algebras, Proc. London Math. Soc. 75 (1997), No. 1, 99–133.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirillov, A.N. (2000). On Some Quadratic Algebras: Jucys—Murphy and Dunkl Elements. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics