Skip to main content

Classical Dynamical r-Matrices for Calogero—Moser Systems and Their Generalizations

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

Construction and study of classical (and quantum) dynamical r-matrices are currently undergoing extensive development. Various examples of such objects were recently discussed, for instance, in Refs. 40, 59, and 60. However, at this time there is no general classifying scheme such as exists in the case of constant classical r-matrices thanks to Belavin and Drinfeld [17]. A partial classification scheme has very recently been proposed [53] for dynamical r-matrices obeying the particular version of the dynamical Yang—Baxter equation [16, 28] corresponding to Calogero—Moser models [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin-Cummings, Reading, MA, 1978.

    MATH  Google Scholar 

  2. A.Yu. Alekseev and A. Z. Malkin, Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys. 162 (1994), No. 1, 147–173.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Antonov, K. Hasegawa, and A. Zabrodin, On trigonometric intertwining vectors and nondynamical R-matrix for the Ruijsenaars model, Nucl. Phys. B 503 (1997), No. 3, 747–770, hep-th/9704074.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts in Math., Vol. 60, Springer, New York, 1978.

    Google Scholar 

  5. G. E. Arutyunov, L. O. Chekhov, and S. A. Frolov, R-matrix quantization of the elliptic Ruijsenaars-Schneider model, Commun. Math. Phys. 192 (1998), No. 2, 405–432, q-alg/9612032.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. E. Arutyunov and S. A. Frolov, On the Hamiltonian structure of the spin Ruijsenaars-Schneider system, J. Phys. A 31 (1998), No. 18, 4203–4216, hep-th/9703119.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G. E. Arutyunov and S. A. Frolov, Quantum dynamical R-matrices and quantum Frobenius group, Commun. Math. Phys. 191 (1998), No. 1, 15–29, q-alg/9610009.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G. E. Arutyunov, S. A. Prolov, and P. B. Medvedev, Elliptic Ruijsenaars-Schneider model via the Poisson reduction of the affine Heisenberg double, J. Phys. A 30 (1997), No. 14, 5051–5063, hep-th/9607170.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Avan, O. Babelon, and E. Billey, The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems, Commun. Math. Phys. 178 (1996), No. 2, 281–299, hep-th/9505091.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J. Avan, O. Babelon, and M. Talon, Construction of the classical R-matrices for the Toda and Calogero models, Algebra i Analiz 6 (1994), No. 2, 67–89.

    MathSciNet  Google Scholar 

  11. J. Avan and G. Rollet, The classical r-matrix for the relativistic Ruijsenaars-Schneider system, Phys. Lett. A 212 (1996), No. 1-2, 50–54, hep-th/9510166.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J. Avan and M. Talon, Graded R-matrices for integrable systems, Nucl. Phys. B 352 (1991), No. 1, 215–249.

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Avan and M. Talon, Classical R-matrix structure for the Calogero model, Phys. Lett. B 303 (1993), No. 1-2, 33–37.

    Article  MathSciNet  ADS  Google Scholar 

  14. O. Babelon and D. Bernard, The sine-Gordon solitons as an N-body problem, Phys. Lett. B 317 (1993), No. 3, 363–368.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. O. Babelon and C. M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett. B 237 (1990), No. 3-4, 411–416.

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Balog, L. Dǎbrowski, and L. Fehér, Classical r-matrix and exchange algebra in WZNW and Toda theories Phys. Lett. B 244 (1990), No. 2, 227–234.

    Article  MathSciNet  ADS  Google Scholar 

  17. A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie algebras, Mathematical Physics Reviews (S. P. Novikov, ed.), Soviet Sci. Rev. Sect. C Math. Phys. Rev., Vol. 4, Harwood Academic Publ., Chur, 1984, pp. 93–165.

    Google Scholar 

  18. D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier, Yang-Baxter equation in long-range interacting systems, J. Phys. A 26 (1993), No. 20, 5219–5236, hep-th/9301084.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E. Billey, J. Avan, and O. Babelon, Exact Yangian symmetry in the classical Euler-Calogero-Moser model, Phys. Lett. A 188 (1994), No. 3, 263–271, hep-th/9401117.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. E. Billey, J. Avan, and O. Babelon, The r-matrix structure of the Euler-Calogero-Moser model, Phys. Lett. A 186 (1994), No. 1-2, 114–118, hep-th/9312042.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. H. W. Braden, R-matrices and generalized inverses, J. Phys. A 30 (1997), No. 15, L485-L493, q-alg/9706001, solv-int/9706001.

    Google Scholar 

  22. H. W. Braden and T. Suzuki, R-matrices for elliptic Calogero-Moser models, Lett. Math. Phys. 30 (1994), No. 2, 147–158, hep-th/9309033.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cimento 13 (1975), No. 11, 411–416.

    Article  MathSciNet  Google Scholar 

  24. F. Calogero, On a functional equation connected with integrable many-body problems, Lett. Nuovo Cimento 16 (1976), No. 3, 77–80.

    Article  MathSciNet  Google Scholar 

  25. J. F. van Diejen, Families of commuting difference operators, Ph.D. thesis, University of Amsterdam, 1994.

    Google Scholar 

  26. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Ser. Soviet Math., Springer, New York, 1987.

    MATH  Google Scholar 

  27. G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proc. International Congress of Mathematicians (Zürich, 1994) (S. D. Chatterji, ed.), Birkhäuser, Basel, 1994, pp. 1247–1255, hep-th/9407154.

    Google Scholar 

  28. G. Felder and C. Wieczerkowski, Conformal blocks on elliptic curves and the Knizhnik-Zamolodchikov-Bernard equations, Commun. Math. Phys. 176 (1996), No. 1, 133–161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. I. M. Gelfand and I. Ya. Dorfman, Hamiltonian operators and algebraic structures associated with them, Funct. Anal. Appl. 13 (1979), No. 4, 248–262.

    Article  MathSciNet  Google Scholar 

  30. J.-L. Gervais and A. Neveu, Novel triangle relations and the absence of tachyons in Liouville string field theory, Nucl. Phys. B 238 (1984), No. 1, 125–141.

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Gibbons and T. Hermsen, A generalisation of the Calogero-Moser system, Physica 11D (1984), No. 3, 337–348.

    MathSciNet  ADS  Google Scholar 

  32. A. Gorsky, Integrable many body systems in the field theories, Theoret. and Math. Phys. 103 (1995), No. 3, 681–700, hep-th/9410228.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A. Gorsky and N. Nekrasov, Elliptic Calogero-Moser system from two-dimensional current algebra, hep-th/9401021.

    Google Scholar 

  34. A. Gorsky and N. Nekrasov, Relativistic Calogero-Moser model as gauged WZW theory, Nucl. Phys. B 436 (1995), No. 3, 582–608, hep-th/9401017.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. K. Hasegawa, Ruijsenaars’ commuting difference operators as commuting transfer matrices, Commun. Math. Phys. 187 (1997), No. 2, 289–325, q-alg/9512029.

    Article  ADS  MATH  Google Scholar 

  36. I. M. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980), No. 4, 282–290.

    Article  MathSciNet  Google Scholar 

  37. I. M. Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Caloger-Moser system and the matrix KP equation, Topics in Topology and Mathematical Physics (A. B. Sossinsky, ed.), Amer. Math. Soc. Transi. Ser. 2, Vol. 170, Amer. Math. Soc, Providence, RI, 1995, pp. 83–119, hep-th/9411160.

    Google Scholar 

  38. I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Differential Geom. 45 (1997), No. 2, 349–389.

    MathSciNet  MATH  Google Scholar 

  39. I. M. Krichever and A. Zabrodin, Spin generalization of the Ruijse-naars-Schneider model, non-Abelian 2D Toda chain and representations of Sklyanin algebra, Russian Math. Surveys 50 (1995), No. 6, 1101–1150, hep-th/9505039.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. P. P. Kulish, S. Rauch-Wojciechowski, and A. V. Tsiganov, Stationary problems for equation of the KdV type and dynamical r-matrices, Modern Phys. Lett. A9 (1994), No. 7, 2063–2073.

    Article  MathSciNet  ADS  Google Scholar 

  41. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. C. Li and S. Parmentier, Nonlinear Poisson structures and r-ma-trices, Commun. Math. Phys. 125 (1989), No. 4, 545–563.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. J. Liouville, Note sur l’integration des équations différentielles de la dynamique, J. Math. Pures Appl. 20 (1855), 137–138.

    Google Scholar 

  44. F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), No. 5, 1156–1162.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. J.-M. Maillet, Kac-Moody algebra and extended Yang-Baxter relations in the O(n) nonlinear a-model, Phys. Lett. B 162 (1985), No. 1-3, 137–142.

    Article  MathSciNet  ADS  Google Scholar 

  46. J.-M. Maillet and F. W. Nijhoff, Integrability for multidimensional lattice models, Phys. Lett. B 224 (1989), No. 4, 389–396.

    Article  MathSciNet  ADS  Google Scholar 

  47. J. Moser, Three integrable Hamiltonian systems connected to isospec-tral deformations, Adv. Math. 16 (1975), 197–220.

    Article  ADS  MATH  Google Scholar 

  48. M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 71 (1981), No. 5, 313–400.

    Article  MathSciNet  ADS  Google Scholar 

  49. M. A. Olshanetsky and A. M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983), No. 6, 313–404.

    Article  MathSciNet  ADS  Google Scholar 

  50. A. G. Reyman and M. A. Semenov-Tian-Shansky, Group-theoretical methods in the theory of finite-dimensional integrable systems, Dynamical Systems. VII. Integrable Systems, Nonholonomic Dynamical Systems (V. I. Arnold and S. P. Novikov, eds.), Encyclopaedia Math. Sci., Vol. 16, Springer, Berlin, 1994, pp. 190–377.

    Google Scholar 

  51. S. N. M. Ruijsenaars, Complete integrability of relativistic Calo-gero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987), No. 2, 191–213.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. S. N. M. Ruijsenaars, Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case, Commun. Math. Phys. 115 (1988), No. 1, 127–165.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. O. Schiffmann, On classification of dynamical r-matrices, Math. Res. Lett. 5 (1998), No. 1-2, 13–30, q-alg/9706017.

    MathSciNet  MATH  Google Scholar 

  54. M. A. Semenov-Tian-Shansky, What a classical r-matrix is, Funct. Anal. Appl. 17 (1983), No. 4, 259–272.

    Article  Google Scholar 

  55. E. K. Sklyanin, On complete integrability of the Landau-Lifschitz equation, unpublished, 1981.

    Google Scholar 

  56. E. K. Sklyanin, Quantum variant of the method of the inverse scattering problem, J. Soviet Math. 19 (1982), No. 5, 1546–1596.

    Article  MathSciNet  MATH  Google Scholar 

  57. E. K. Sklyanin, Dynamic r-matrices for the elliptic Calogero-Moser model, St. Petersburg Math. J. 6 (1995), No. 2, 397–406.

    MathSciNet  Google Scholar 

  58. Yu. B. Suris, Why is the Ruijsenaars-Schneider hierarchy governed by the same R-operator as the Calogero-Moser one?, Phys. Lett. A 225 (1997), No. 4-6, 253–262.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. A. V. Tsiganov, Automorphisms of sl(2) and dynamical r-matrices, J. Math. Phys. 39 (1998), No. 1, 650–664, solv-int/9610003.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Y. B. Zeng and J. Hietarinta, Classical Poisson structures and r-matrices from constrained flows, J. Phys. A 29 (1996), No. 16, 5241–5252, solv-int/9509005.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Avan, J. (2000). Classical Dynamical r-Matrices for Calogero—Moser Systems and Their Generalizations. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics