Skip to main content

The Plasmin System, a Marker of the Propensity to Develop Adhesions

  • Chapter

Abstract

In healing, tissue remodeling is essential to form the new tissue. The process of tissue remodeling is triggered by the trauma, amplified and orchestrated during inflammation, and concluded when recruited cells have replaced the defect with newly formed tissue. These events require a complex interaction of cytokines, growth factors, and last, but not least, proteases. In this context, the main function of the proteases are to clear the area by degrading damaged tissue and fibrin deposits and to facilitate the migration of cells. For cells to relocate, they are, during certain conditions, able to transverse physical barriers including basal laminae and the extracellular matrix (ECM). Typically this migration occurs during tissue repair, embryogenesis, and spreading of malignant tumors. When cells migrate, they degrade the preceding tissue by a focal pericellular prote-olysis accomplished by locally generated proteases.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vassalli J-D, Pepper MS. Membrane proteases in focus. Nature (Lond) 1994; 370:14–15.

    Article  CAS  Google Scholar 

  2. Mignatti P, Rifkin DB. Biology and biochemistry of pro-teinases in tumor invasion. Physiol Rev 1993; 73:161–195.

    PubMed  CAS  Google Scholar 

  3. Huber R, Carrell RW. Implication of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 34:15872–15879.

    Google Scholar 

  4. Wong AP, Cortez SL, Baricos WH. Role of plasmin and gelatinase in extracellular matrix degradation by cultured rat mesangial cells. Am J Physiol 1992;263:F1112–F1118.

    PubMed  CAS  Google Scholar 

  5. Saksela O, Rifkin DB. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 1990; 110:767–775.

    Article  PubMed  CAS  Google Scholar 

  6. Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 1989; 109:309–315.

    Article  PubMed  CAS  Google Scholar 

  7. Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin DB. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system.J Cell Biol 1990; 111:757–763.

    Article  PubMed  CAS  Google Scholar 

  8. Murphy G, Ward R, Gavrilovic J, Atkinson S. Physiological mechanisms for metalloproteinase activation. Matrix Suppl 1992: 1:224–230.

    PubMed  CAS  Google Scholar 

  9. Murphy G, Atkinson S, Ward R, Gavrilovic J, Reynolds JJ. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci 1992; 667:1–12.

    Article  PubMed  CAS  Google Scholar 

  10. Petersen LC, Lund LR, Nielsen LS, Dano K, Skriver L. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity.J Biol Chem 1988; 263:11189–11195.

    PubMed  CAS  Google Scholar 

  11. Mignatti P, Rifkin DB, Welgus HG, Parks WC. Proteinases and tissue remodelling. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press, 1996:427–474.

    Google Scholar 

  12. Pannell R, Black J, Gurewich V. The complementary modes of action of tissue plasminogen activator and pro-urokinase by their synergistic effect on clot lysis may be explained. J Clin Invest 1988; 81:853–859.

    Article  PubMed  CAS  Google Scholar 

  13. Padro T, van den Hoogen CM, Emeis JJ. Distribution of tissue-type plasminogen activator (activity and antigen) in rat tissues. Blood Coagul Fibrinolysis 1990; 1:601–608.

    PubMed  CAS  Google Scholar 

  14. Risberg B, Eriksson E, Björk S, Hansson GK. Immuno-histochemical localization of plasminogen activators in human saphenous veins. Thromb Res 1986; 37:301–308.

    Article  Google Scholar 

  15. van Hinsbergh VWM, Kooistra T, Scheffer MA, van Bockel JH, van Muijen GNP. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood 1990; 75:1490–1497.

    PubMed  Google Scholar 

  16. Wodzinski MA, Bardhan KD, Reilly JT, Preston FE. Reduced tissue type plasminogen activator activity of the gastroduodenal mucosa in peptic ulcer disease. Gut 1993; 34:1310–1314.

    Article  PubMed  CAS  Google Scholar 

  17. Thompson JN, Paterson Brown S, Harbourne T, Whawell SA, Kalodiki E, Dudley MAE. Reduced human peritoneal plasminogen activating activity: possible mechanism of adhesion formation. Br J Surg 1989; 76:382–384.

    Article  PubMed  CAS  Google Scholar 

  18. Vipond MN, Whawell SA, Thompson JN, Dudley HA. Peritoneal fibrinolytic activity and intra-abdominal adhesions. Lancet 1990; 335:1120–1122.

    Article  PubMed  CAS  Google Scholar 

  19. Whawell SA, Wang Y, Fleming KA, Thompson EM, Thompson JN. Localization of plasminogen activator inhibitor-1 production in inflamed appendix by in situ mRNA hybridization. J Pathol 1993; 169:67–71.

    Article  PubMed  CAS  Google Scholar 

  20. Whawell SA, Vipond MN, Scott-Coombes D, Thompson JN. Plasminogen activator inhibitor 2 reduces peritoneal fibrinolytic activity in inflammation. Br J Surg 1993; 80:107–109.

    Article  PubMed  CAS  Google Scholar 

  21. Nkere UU, Whawell SA, Thompson EM, Thompson JN, Taylor KM. Changes in pericardial morphology and fibri-nolytic activity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1993; 106:339–345.

    PubMed  CAS  Google Scholar 

  22. Holmdahl L, Eriksson E, Risberg B. Fibrinolysis in human peritoneum during operation. Surgery (St. Louis) 1996; 119:701–705.

    Article  CAS  Google Scholar 

  23. Holmdahl L, Falkenberg M, Ivarsson ML, Risberg B. Plas-minogen activator and inhibitors in peritoneal tissue. AP-MIS 1997; 105:25–30.

    CAS  Google Scholar 

  24. Holmdahl L, Eriksson E, Risberg B. Measurement of fibri-nolytic components in human tissue. Scand J Clin Lab Invest 1997; 57:445–452.

    Article  PubMed  CAS  Google Scholar 

  25. Holmdahl L, Eriksson E, Eriksson Bl, Risberg B. Depression of peritoneal fibrinolysis during surgery is a local response to trauma. Surgery (St. Louis) 1998; 123:539–544.

    Article  CAS  Google Scholar 

  26. Ivarsson M-L, Holmdahl L, Eriksson E, Söderberg R, Risberg B. Expression and kinetics of fibrinolytic components in plasma and peritoneum during abdominal surgery. Fibrinolysis 1998; 12:61–67.

    CAS  Google Scholar 

  27. Ranby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704:461–469.

    Article  PubMed  CAS  Google Scholar 

  28. Verheijen JH, Chang GTG, Kluft C. Evidence for the occurrence of a fast-acting inhibitor for tissue-type plasminogen activator in human plasma. Thromb Haemostasis 1984; 51:392–395.

    CAS  Google Scholar 

  29. Juhan-Vague I, Moerman B, DeCock F, Aillaud MF, Collen D. Plasma levels of a specific inhibitor of tissue-type plasminogen activator (and urokinase) in normal and pathological conditions. Thromb Res 1984; 33:523–530.

    Article  PubMed  CAS  Google Scholar 

  30. Drapier JC, Tenu JP, Lemaire G, Petit JF. Regulation of plasminogen activator secretion in mouse peritoneal macrophages. Biochimie (Paris), 1979; 61:463–47l.

    Article  CAS  Google Scholar 

  31. Freyria AM, Paul J, Belleville J, Broyer P, Eloy R. Rat peritoneal macrophage procoagulant and fibrinolytic activities. An expression of the local inflammatory response. Comp Biochem Physiol A 1991; 99:517–524.

    Article  PubMed  CAS  Google Scholar 

  32. Grulich-Henn J, Preissner KT, Muller-Berghaus G. Hep-arin stimulates fibrinolysis in mesothelial cells by selective induction of tissue-plasminogen activator but not plasminogen activator inhibitor-1 synthesis. Thromb Haemostasis 1990; 64:420–425.

    CAS  Google Scholar 

  33. Idell S, Zwieb C, Kumar A, Koenig KB, Johnson AR. Pathways of fibrin turnover of human pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 1992; 7:414–426.

    PubMed  CAS  Google Scholar 

  34. Ivarsson M-L, Holmdahl L, Falk P, Mölne J, Risberg B. Characterization and f ibrinolytical properties of mesothelial cells isolated from peritoneal lavage. Scand J Clin Lab Invest 1998; 58:195–204.

    Article  PubMed  CAS  Google Scholar 

  35. Ranby M, Bergsdorf N, Nilsson T. Enzymatic properties of the one-and two-chain form of tissue plasminogen activator. Thromb Res 1982; 27:175–183.

    Article  PubMed  CAS  Google Scholar 

  36. Grondahl-Hansen J, Christensen IJ, Rosenquist C, et al. High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 1993; 53:2513–2521.

    PubMed  CAS  Google Scholar 

  37. Nykjaer A, Petersen CM, Moller B, Andreasen PA, Glie-mann J. Identification and characterization of urokinase receptors in natural killer cells and T-cell-derived lym-phokine activated killer cells. FEBS Lett 1992; 300:13–17.

    Article  PubMed  CAS  Google Scholar 

  38. Vassalli JD, Wohlwend A, Belin D. Urokinase-catalyzed plasminogen activation at the monocyte/macrophage cell surface: a localized and regulated proteolytic system. Curr Top Microbiol Immunol 1992; 181:65–86.

    Article  PubMed  CAS  Google Scholar 

  39. Casslen B, Gustavsson B, Astedt B. Cell membrane receptors for urokinase plasminogen activator are increased in malignant ovarian tumours. Eur J Cancer 1991; 27:1445–1448.

    Article  PubMed  CAS  Google Scholar 

  40. Vassalli JD, Dayer JM, Wohlwend A, Belin D. Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macro-phages. J Exp Med 1984; 159:1653–1668.

    Article  PubMed  CAS  Google Scholar 

  41. Lu HR, Wu Z, Pauwels P, Lijnen HR, Collen D. Comparative thrombolytic properties of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (u-PA) and KlK2Pu (a t-PA/u-PA chimera) in a combined arterial and venous thrombosis model in the dog.J Am Coll Cardiol 1992; 19:1350–1359.

    Article  PubMed  CAS  Google Scholar 

  42. Collen D, Lijnen RH. Fibrin-specific fibrinolysis. Ann NY Acad Sci 1992; 667:259–271.

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto K, Loskutoff DJ. Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue-type plasminogen activator. J Clin Invest 1996; 97:2440–2451.

    Article  PubMed  CAS  Google Scholar 

  44. Moller LB. Structure and function of the urokinase receptor. Blood Coagul Fibrinolysis 1993; 4:293–303.

    Article  PubMed  CAS  Google Scholar 

  45. Blasi F. Urokinase and urokinase receptor: a paracrine/au-tocrine system regulating cell migration and invasiveness. Bioessays 1993; 15:105–111.

    Article  PubMed  CAS  Google Scholar 

  46. Duffy MJ. Urokinase-type plasminogen activator and malignancy. Fibrinolysis 1993; 7:295–302.

    Article  CAS  Google Scholar 

  47. van Hinsbergh VWM, Kooistra T, van den Berg EA. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo. Blood 1988; 72:1467–1473.

    PubMed  Google Scholar 

  48. Emeis JJ, Kooistra T. Interleukin-1 and lipopolysaccarides induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 1986; 163:1260–1266.

    Article  PubMed  CAS  Google Scholar 

  49. Nordt TK, Klassen KJ, Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler Thromb 1993; 13:1822–1828.

    Article  PubMed  CAS  Google Scholar 

  50. Wohlwend A, Belin D, Vassalli J-D. Plasminogen activator-specific inhibitors in mouse machrophages: in vivo and vitro modulation of their synthesis and secretion. J Immunol 1987; 139:1278–1284.

    PubMed  CAS  Google Scholar 

  51. Kuraoka S, Campeau JD, Rodgers KE, Nakamura RM, di-Zerega GS. Effects of interleukin-1 (IL-1) on postsurgical macrophage secretion of protease and protease inhibitor activities. J Surg Res 1992; 52:71–78.

    Article  PubMed  CAS  Google Scholar 

  52. Idell S, Zwieb C, Boggaram J, Holiday D, Johnson AR, Raghu G. Mechanisms of fibrin formation and lysis by human lung fibroblasts: influence of TGF-beta and TNF-alpha. AmJ Physiol 1992;263:L487–L494.

    CAS  Google Scholar 

  53. Carmassi F, De Negri F, Morale M, Puccetti R, Song KY, Chung SI. Assessment of coagulation and fibrinolysis in synovial fluid of rheumatoid arthritis patients. Fibrinolysis 1994; 8:162–171.

    Article  Google Scholar 

  54. Casslen B, Urano S, Ny T. Progesterone regulation of plas-minogen activator inhibitor 1 (PAI-1) antigen and mRNA levels in human endometrial stromal cells. Thromb Res 1992; 66:75–87.

    Article  PubMed  CAS  Google Scholar 

  55. Erickson LA, Ginsberg MH, Loskutoff DJ. Detection and partial characterization of an inhibitor of plasminogen activator in human platelets. J Clin Invest 1984; 74:1465–1472.

    Article  PubMed  CAS  Google Scholar 

  56. Schwartz BS, Monroe MC, Bradshaw JD. Endotoxin-in-duced production of plasminogen activator inhibitor by human monocytes is autonomous and can be inhibited by lipid X. Blood 1989; 73:2188–2195.

    PubMed  CAS  Google Scholar 

  57. Eriksson E, Risberg B. Tissue plasminogen activator and its inhibitor following major surgery in relation to ventilatory pattern. Acta Chir Scand 1988; 154:57–60.

    PubMed  CAS  Google Scholar 

  58. Kluft C, De Bart ACW, Bartheis M. Short term extreme increases in plasminogen activator inhibitor (PAI-1) in plasma of polytrauma patients. Fibrinolysis 1988; 2:221–226.

    Google Scholar 

  59. Eriksson BI, Eriksson E, Gyzander E, Teger-Nilsson A-C, Risberg B. Thrombosis after hip replacement. Relationship to the fibrinolytic system. Acta Orthop Scand 1989; 60:159–163.

    Article  PubMed  CAS  Google Scholar 

  60. Engebretsen LF, Keirulf P, Brandtzaeg P. Extreme plasminogen activatior inhibitor and endotoxin values in patients with meningococcal disease. Thromb Res 1986; 42:713–716.

    Article  PubMed  CAS  Google Scholar 

  61. Wilson HM, Reid FJ, Brown PA, Power DA, Haites NE, Booth NA. Effect of transforming growth factor-beta 1 on plasminogen activators and plasminogen activator in-hibitor-1 in renal glomerular cells. Exp Nephrol 1993; 1:343–350.

    PubMed  CAS  Google Scholar 

  62. Gerwin BI, Keski Oja J, Seddon M, Lechner JF, Harris CC. TGF-beta 1 modulation of urokinase and PAI-1 expression in human bronchial epithelial cells. Am J Physiol 1990; 259:L262–L269.

    PubMed  CAS  Google Scholar 

  63. Wiman B, Almquist Å, Sigurdardottir O, Lindahl T. Plasminogen activator inhibitor 1 (PAI) is bound to vitro-nectin in plasma. FEBS Lett 1988, 242:125–128.

    Article  PubMed  CAS  Google Scholar 

  64. Podor TJ, Loskutoff DJ. Immunoelectron microscopic localization of type 1 plasminogen activator inhibitor in the extracellular matrix of transforming growth factor-ß activated endothelial cells. Ann NYAcad Sei 1992; 667:46–49.

    Article  CAS  Google Scholar 

  65. Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 1987; 69:381–387.

    PubMed  CAS  Google Scholar 

  66. Sancho E, Tonge DW, Hockney RC, Booth NA. Purification and characterization of active and stable recombinant plasminogen-activator inhibitor accumulated at high levels in Escherichia coli. Eur J Biochem 1994; 224:125–134.

    Article  PubMed  CAS  Google Scholar 

  67. Kawano T, Morimoto K, Uemura Y. Urokinase inhibitor in human placenta. Nature (Lond) 1968; 217:253–254.

    Article  CAS  Google Scholar 

  68. Astedt B, Lecander I, Ny T. The placental type plasminogen activator inhibitor PAI-2. Fibrinolysis 1987; 1:203–208.

    Article  Google Scholar 

  69. Marshall BC, Xu QP, Rao NV, Brown BR, Hoidal JR. Pulmonary epithelial cell urokinase-type plasminogen activator. Induction by interleukin-1 beta and tumor necrosis factor-alpha. J Biol Chem 1992; 267:11462–11469.

    PubMed  CAS  Google Scholar 

  70. Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol 1990; 68:1–19.

    Article  PubMed  CAS  Google Scholar 

  71. Heeb MJ, Espana F, Geiger M, Collen D, Stump DC, Griffin JH. Immunological identity to heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3. J Biol Chem 1987; 262:15813–15816.

    PubMed  CAS  Google Scholar 

  72. Ecke S, Geiger M, Resch I, et al. Inhibition of tissue kallikrein by protein C inhibitor. Evidence for identity of protein C inhibitor with the kallikrein binding protein. J Biol Chem 1992; 267:7048–7052.

    PubMed  CAS  Google Scholar 

  73. Plow EF, Felez J, Miles LA. Cellular regulation of fibrinolysis. Thromb Haemostasis 1991; 66:32–36.

    CAS  Google Scholar 

  74. Weisel JW, Cederholm-Williams SA. Fibrinogen and fibrin. In: Domb AJ, Kost J, Wiseman DM, eds. Handbook of Biodegradable Polymers. Amsterdam: Harwood, 1997:347–365.

    Google Scholar 

  75. Harris ES, Morgan RF, Rodeheaver GT. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery (St. Louis) 1995; 17:663–669.

    Article  Google Scholar 

  76. Falk E. Dynamics in thrombus formation. Ann NY Acad Sci 1992; 667:204–223.

    Article  PubMed  CAS  Google Scholar 

  77. Muzaffar TZ, Youngson GG, Bryce WAJ, Dhall DP. Studies on fibrin formation and effects of dextran. Thromb Haemostasis 1972; 28:244–256.

    CAS  Google Scholar 

  78. Ellis H. The aetiology of postoperative abdominal adhesions: an experimental study. Br J Surg 1962; 50:10–16.

    Article  PubMed  CAS  Google Scholar 

  79. James DCO, Ellis H, Hugh TB. The effect of streptokinase on experimental intraperitoneal adhesion formation. J Pathol Bacteriol 1965; 90:279–287.

    Article  PubMed  CAS  Google Scholar 

  80. Gervin AS, Puckett CL, Silver D. Serosal hypofibrinolysis. Am J Surg 1973; 125:80–88.

    Article  PubMed  CAS  Google Scholar 

  81. Buckman RF, Woods M, Sargent L, Gervin AS. A unifying pathogenetic mechanism in the etiology of intraperitoneal adhesions. J Surg Res 1976; 20:1–5.

    Article  PubMed  CAS  Google Scholar 

  82. Raftery AT. Effect of peritoneal trauma on peritoneal fibrinolytic activity and intraperitoneal adhesion formation. Eur Surg Res 1981; 13:397–401.

    Article  PubMed  CAS  Google Scholar 

  83. Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 1973; 115:375–392.

    PubMed  CAS  Google Scholar 

  84. Myhre-Jensen O, Bergman Larsen S, Astrup T. Fibrinolytic activity in serosal and synovial membranes. Arch Pathol Lab Med 1969; 88:623–630.

    Google Scholar 

  85. Porter JM, Ball AP, Silver D. Mesothelial fibrinolysis. J Tho-rac Cardiovasc Surg 1971; 62:725–730.

    CAS  Google Scholar 

  86. Scott-Coombes DM, Whawell SA, Vipond MN, Thompson JN. The human intraperitoneal fibrinolytic response to elective surgery. Br J Surg 1995; 82:414–417.

    Article  PubMed  CAS  Google Scholar 

  87. Raftery AT. Regeneration of peritoneum: a fibrinolytic study. J Anat 1979; 129:659–664.

    PubMed  CAS  Google Scholar 

  88. Merio G, Fausone G, Barbero C, Castagna B. Fibrinolytic activity of the human peritoneum. Eur Surg Res 1980; 12:433–438.

    Article  Google Scholar 

  89. Pugatch EMJ, Poole JCF. Inhibitor of fibrinolysis from mesothelium. Nature (Lond) 1969; 221:269–270.

    Article  CAS  Google Scholar 

  90. Hau T, Payne WD, Simmons RL. Fibrinolytic activity of the peritoneum during experimental peritonitis. Surg Gy-necol Obstet 1979; 148:415–418.

    CAS  Google Scholar 

  91. Lundin C, Sullins KE, White NA, Clem MF, Debowes RM, Pfeiffer CA. Induction of peritoneal adhesions with small intestinal ischaemia and distention in the foal. Equine Vet J 1989; 21:451–458.

    Article  PubMed  CAS  Google Scholar 

  92. Fedor E, Mikô I, Nagy T. The role of ischaemia in the formation of postoperative intra-abdominal adhesions. Acta Chir Hung 1983; 145:3–8.

    Google Scholar 

  93. Nishimura K, Nakamura RM, diZerega GS. Ibuprofen inhibition of postsurgical adhesion formation: a time and dose response biochemical evaluation in rabbits. J Surg Res 1984; 36:115–124.

    Article  PubMed  CAS  Google Scholar 

  94. Nishimura K, Nakamura RM, diZerega GS. Biochemical evaluation of postsurgical wound repair: prevention of in-traperitoneal adhesion formation with ibuprofen. J Surg Res 1983; 34:219–226.

    Article  PubMed  CAS  Google Scholar 

  95. Rodgers K, Girgis W, diZerega GS, Bracken K, Richer L. Inhibition of postsurgical adhesions by liposomes containing nonsteroidal antiinflammatory drugs. Int J Fertil 1990; 35:315–320.

    PubMed  CAS  Google Scholar 

  96. Rodgers K, Girgis W, diZerega GS, Johns DB. Intraperi-toneal tolmetin prevents postsurgical adhesion formation in rabbits. Int J Fertil 1990; 35:40–45.

    PubMed  CAS  Google Scholar 

  97. Abe H, Rodgers KE, Campeau JD, Girgis W, Ellefson D, diZerega GS. The effect of intraperitoneal administration of sodium tolmetin-hyaluronic acid on the postsurgical cell infiltration in vivo. J Surg Res 1990; 49:322–327.

    Article  PubMed  CAS  Google Scholar 

  98. Hill West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA. Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorb-able hydrogel barriers. Obstet Gynecol 1994; 83:59–64.

    PubMed  CAS  Google Scholar 

  99. Hill West JL, Dunn RC, Hubbell JA. Local release of fibri-nolytic agents for adhesion prevention. J Surg Res 1995; 59:759–763.

    Article  PubMed  CAS  Google Scholar 

  100. Vipond MN, Whawell SA, Thompson JN, Dudley HAF. Effect of experimental peritonitis and ischemia on peritoneal fibrinolytic activity. Eur J Surg 1994; 160:471–477.

    PubMed  CAS  Google Scholar 

  101. Scott-Coombes DM, Whawell SA, Thompson JN. The operative peritoneal fibrinolytic response to abdominal operation. Eur J Surg 1995; 161:395–399.

    PubMed  CAS  Google Scholar 

  102. Kluft C. Fibrinolytic shut-down after surgery. In: Sawaya R, ed. Fibrinolysis and the Central Nervous System, Philadelphia: Hanley & Belfus, 1990:127–140.

    Google Scholar 

  103. D’Angelo A, Kluft C, Verheijen JH, Rijken DC, Mozzi E. Fibrinolytic shutdown after surgery: impairment of the balance between tissue type plasminogen activator and its specific inhibitor. Eur J Clin Invest 1985; 15:308–312.

    Article  PubMed  Google Scholar 

  104. Holmdahl L, Eriksson E, Rippe B, Risberg B. Kinetics of transperitoneal tissue-type plasminogen (t-PA) absorption. Fibrinolysis 1996; 10:1–7.

    CAS  Google Scholar 

  105. Parmer RJ, Mahata M, Mahata S, Sebald MT, O’Connor DT, Miles LA. Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. J Biol Chem 1997: 272:1976–1982.

    Article  PubMed  CAS  Google Scholar 

  106. Emeis JJ, van den Hoogen CM, Diglio CA. Synthesis, storage and regulated secretion of tissue-type plasminogen activator by cultured rat heart endothelial cells. Fibrinolysis 1998; 12:9–16.

    CAS  Google Scholar 

  107. Sitter T, Gödde M, Spannagl M, Fricke H, Kooistra T. Intraperitoneal coagulation and fibrinolysis during inflammation: in vivo and in vitro observations. Fibrinolysis 1996; 10(suppl2):99–104.

    CAS  Google Scholar 

  108. Tietze L, Elbrecht A, Schauerte C, et al. Modulation of pro-and antifibrinolytic properties of human peritoneal mesothelial cells by transforming growth factor ßl (TGF-ßl), tumor necrosis factor a (TNF-a) and interleukin lß (IL-lß). Thromb Haemostasis 1998; 79:362–370.

    CAS  Google Scholar 

  109. Roberts AB, Sporn MB. Transforming growth factor-ß. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press, 1996: 275–308.

    Google Scholar 

  110. Whawell SA, Thompson JN. Cytokine-induced release of plasminogen activator inhibitor-1 by human mesothelial cells. Eur J Surg 1995; 161:315–317.

    PubMed  CAS  Google Scholar 

  111. Lundgren CH, Sawa H, Sobel BE, Fujii S. Modulation of expression of monocyte/macrophage plasminogen activator activity and its implications for attenuation of vascu-lopathy. Circulation 1994; 90:1927–1934.

    Article  PubMed  CAS  Google Scholar 

  112. Weibel M, Majno AG. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am J Surg 1973; 126:345–353.

    Article  PubMed  CAS  Google Scholar 

  113. Luijendijk RW, de Lange DCD, Wauters CCAP, et al. Foreign material in postoperative adhesions. Ann Surg 1996; 223:242–248.

    Article  PubMed  CAS  Google Scholar 

  114. Ivarsson M-L, Bergström M, Eriksson E, Risberg B, Holmdahl L. Tissue markers as predictors of post-surgical adhesions. Br J Surg 1998; 85:1549–1554.

    Article  PubMed  CAS  Google Scholar 

  115. Diamond MP, Daniell JF, Feste J, et al. Adhesion reformation and de novo adhesion formation after reproductive pelvic surgery. Fertil Steril 1987; 47:864–866.

    PubMed  CAS  Google Scholar 

  116. Menzies D, Ellis H. Intestinal obstruction from adhesions—how big is the problem? Ann R Coll Surg Engl 1990; 72:60–63.

    PubMed  CAS  Google Scholar 

  117. Sancho E, Declerck PJ, Price NC, Kelly SM, Booth NA. Conformational studies on plasminogen activator inhibitor (PAI-1) in active, latent, substrate, and cleaved forms. Biochemistry 1995; 34:1064–1069.

    Article  PubMed  CAS  Google Scholar 

  118. Aalto M, Kulonen E, Penttinen R, Renvall S. Collagen synthesis in cultured mesothelial cells. Acta Chir Scand 1981; 147:1–6.

    PubMed  CAS  Google Scholar 

  119. Arid A, Tazuke SI, Attar E, Kliman HJ, Olive DL. Inter-leukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod 1996; 2:40–45.

    Article  Google Scholar 

  120. Baer AN, Green FA. Cyclooxygenase activity of cultured human mesothelial cells. Prostaglandins 1993; 46:37–49.

    Article  PubMed  CAS  Google Scholar 

  121. Beavis J, Harwood JL, Coles GA, Williams JD. Synthesis of phospholipids by human peritoneal mesothelial cells. Perit Dial Int 1994; 14:348–355.

    PubMed  CAS  Google Scholar 

  122. Bermudez E, Everitt J, Walker C. Expression of growth factor and growth factor receptor RNA in rat pleural mesothelial cells in culture. Exp Cell Res 1990; 190:91–98.

    Article  PubMed  CAS  Google Scholar 

  123. Betjes MGH, Tuk CW, Struijk DG, et al. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-a, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J Infect Dis 1992; 168:1202–1210.

    Article  Google Scholar 

  124. Bittinger F, Klein CL, Skarke C, et al. PECAM-1 expression in human mesothelial cells: an in vitro study. Patho-biology 1996; 64:320–327.

    CAS  Google Scholar 

  125. Bottles KD, Laszik Z, Morrissey JH, Kinasewitz GT. Tissue factor expression in mesothelial cells: induction both in vivo and in vitro. Am J Respir Cell Mol Biol 1997; 17:164–172.

    PubMed  CAS  Google Scholar 

  126. Breborowicz A, Korybalska K, Grzybowski A, Wiec-zorowska Tobis K, Martis L, Oreopoulos DG. Synthesis of hyaluronic acid by human peritoneal mesothelial cells: effect of cytokines and dialysate. Perit Dial Int 1996; 16:374–378.

    PubMed  CAS  Google Scholar 

  127. Bult H, Coene M-C, Rampart M, Herman AG. Complement derived factors and prostacyclin formation by rabbit isolated peritoneum and cultured mesothelial cells. Agents Actions Suppl 1984; 14:237–247.

    PubMed  CAS  Google Scholar 

  128. Cannistra SA, Ottensmeier C, Tidy J, DeFranzo B. Vascular cell adhesion molecule-1 expressed by peritoneal mesothelium partly mediates the binding of activated human T lymphocytes. Exp Hematol 1994; 22:996–1002.

    PubMed  CAS  Google Scholar 

  129. Cicila GT, O’Connel TM, Hahn WC, Reinwald JG. Cloned cDNA sequence for the human mesothelial protein ‘mesosecrin’ discloses its identity as a plasminogen activator inhibitor (PAI-1) and a recent evolutionary change in transcript processing J Cell Sci 1989; 94:1–10.

    CAS  Google Scholar 

  130. Coene MC, Solheid C, Clates M, Herman AG. Prosta-glandin production by cultured mesothelial cells. Arch Int Pharmacodyn 1981; 249:316–318.

    PubMed  CAS  Google Scholar 

  131. Coene M-C, van Hove C, Claeys M, Herman A. Arachi-donic acid metabolism by cultured mesothelial cells. Different transformations of exogenously added and en-dogenously released substrate. Biochim Biophys Acta 1982; 710:437–445.

    Article  PubMed  CAS  Google Scholar 

  132. Davies M, Stylianou E, Yung S, Thomas GJ, Coles GA, Williams JD. Proteoglycans of CAPD-dialysate fluid and mesothelium. Contrib Nephrol 1990; 85:134–141.

    PubMed  CAS  Google Scholar 

  133. Dobbie JW, Pavlina T, Lloyd J, Johnson RC. Phosphatidyl-choline synthesis by peritoneal mesothelium: its implication for peritoneal dialysis. Am J Kidney Dis 1988; 12:31–36.

    PubMed  CAS  Google Scholar 

  134. Douvdevani A, Rapoport J, Konforty A, Argov S, Ovnat A, Chaimovitz C. Human peritoneal mesothelial cells synthesize IL-1 alpha and beta. Kidney Int 1994; 46:993–1001.

    Article  PubMed  CAS  Google Scholar 

  135. Ferriola PC, Stewart W. Fibronectin expression and organization in mesothelial and mesothelioma cells. Am J Physiol 1996;271:L804–L812.

    PubMed  CAS  Google Scholar 

  136. Griffith DE, Miller EJ, Gray LD, Idell S, Johnson AR. Interleukin-1-mediated release of interleukin-8 by asbestos-stimulated human pleural mesothelial cells. Am J Respir Cell Mol Biol 1994; 10:245–252.

    PubMed  CAS  Google Scholar 

  137. Harvey W, Amlot PL. Collagen production by human mesothelial cells in vitro. J Pathol 1983; 139:337–347.

    Article  PubMed  CAS  Google Scholar 

  138. Hjelle JT, Golinska BT, Waters DC, et al. Lectin staining of peritoneal mesothelial cells in vitro. Perit Dial Int 1991; 11:307–316.

    PubMed  CAS  Google Scholar 

  139. Hjelle JT, Ho AK, Dobbie JW, Steidley KR, Duffield R. Evidence of muscarinic acetylcholine receptors and GTP-binding proteins in peritoneal mesothelial cells in vitro. Adv Perif Dial 1993: 9:303–306.

    CAS  Google Scholar 

  140. Honda A, Noguchi N, Takehara H, Ohashi Y, Asuwa N, Mori Y. Cooperative enhancement of hyaluronic acid synthesis by combined use of IGF-1 and EGF, and inhibition by tyrosine kinase inhibitor genistein, in cultured mesothelial cells from rabbit pericardial cavity. J Cell Sci 1991; 98:91–98.

    PubMed  CAS  Google Scholar 

  141. Honda A, Sekiguchly, Mori Y. Prostaglandin E2 stimulates cyclic AMP-mediated hyaluronan synthesis in rabbit pericardial mesothelial cells. Biochem J 1993; 292:497–502.

    PubMed  CAS  Google Scholar 

  142. Jonjic N, Peri G, Bernasconi S, et al. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 1992; 176:1165–1174.

    Article  PubMed  CAS  Google Scholar 

  143. Kawata Y, Mimuro J, Kaneko M, Shimada K, Sakata Y. Expression of plasminogen activator inhibitor 2 in the adult and embryonic mouse tissues. Thromb Haemostasis 1996; 76:569–576.

    CAS  Google Scholar 

  144. Korybalska K, Breborowicz A, Martis L, Oreopoulos DG. In vitro detection of hydrogen peroxide in mesothelial cells. Adv Perit Dial 1996; 12:7–10.

    PubMed  CAS  Google Scholar 

  145. Kumar A, Koenig KB, Johnson AR, Idell S. Expression and assembly of procoagulant complexes by human pleural mesothelial cells. Thromb Haemostasis 1994; 71:587–592.

    CAS  Google Scholar 

  146. Lanfrancone L, Boraschi D, Ghiara P, et al. Human peritoneal mesothelial cells produce many cytokines (granu-locyte colony-stimulating factor [CSF], granulocyte-monocyte-CSF, macrophage-CSF, interleukin-1 [IL-1], and IL-6) and are activated and stimulated to grow by IL-1. Blood 1992; 80:2835–2842.

    PubMed  CAS  Google Scholar 

  147. Marshall BC, Santana A, Xu QP, et al. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression. J Clin Invest 1993; 91:1792–1799.

    Article  PubMed  CAS  Google Scholar 

  148. Morganti M, Budianto D, Arno Takiy B, et al. Detection of minimal but significant amount of von Willebrand factor in human omentum mesothelial cell cultures. Biomed Pharmacother 1996; 50:369–372.

    Article  PubMed  CAS  Google Scholar 

  149. Owens MW, Grisham MB. Nitric oxide synthesis by rat pleural mesothelial cells: induction by cytokines and lipopolysaccaride. Am J Physiol 1993; 265:110–116.

    Google Scholar 

  150. Raftery AT. An enzyme histochemical study of mesothelial cells in rodents.J Anat 1973; 115:365–373.

    PubMed  CAS  Google Scholar 

  151. Rougier JP, Moullier P, Piedagnel R, Ronco PM. Hyper-osmolality suppresses but TGF beta 1 increases MMP9 in human peritoneal mesothelial cells. Kidney Int 1997; 51:337–347.

    Article  PubMed  CAS  Google Scholar 

  152. Rougier JP, Guia S, Hagege, Nguyen G, Ronco PM. PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures: transcriptional regulation by TGF-beta 1. Kidney Int 1998; 54:87–98.

    Article  PubMed  CAS  Google Scholar 

  153. Shanthaveerappa TR, Bourne GH. Histochemical studies on the localization of oxidative and dephosphorylating enzymes and esterases in the peritoneal mesothelial cells. Histochemistry 1965; 5:331–338.

    Article  Google Scholar 

  154. Shostak A, Pivnik E, Gotloib L. Cultured rat mesothelial cells generate hydrogen peroxide: a new player in peritoneal defense? J Am Soc Nephrol 1996; 7:2371–2378.

    PubMed  CAS  Google Scholar 

  155. Sitter T, Toet K, Fricke H, Schiffl H, Held E, Kooistra T. Modulation of procoagulant and f ibrinolytic system com-ponents of mesothelial cells by inflammatory mediators. Am J Physiol 1996;271:R1256–R1263.

    PubMed  CAS  Google Scholar 

  156. Suassuna JH, Das Neves FC, Hartley RB, Ogg CS, Cameron JS. Immunohistochemical studies of the peritoneal membrane and infiltrating cells in normal subjects and in patients on CAPD. Kidney Int 1994; 46:443–454.

    Article  PubMed  CAS  Google Scholar 

  157. Topley N, Jörres A, Luttman W, et al. Human peritoneal mesothelial cells synthesize interleukin-6: induction by II-lß and TNF-α. Kidney Int 1993; 43:226–233.

    Article  PubMed  CAS  Google Scholar 

  158. Topley N, Jörres A, Luttman W, et al. Human peritoneal mesothelial cells synthesize interleukin-8: synergistic induction by interleukin-lß and tumor necrosis factor-a. AmJ Pathol 1993; 142:1876–1886.

    CAS  Google Scholar 

  159. Topley N, Petersen MM, Mackenzie R, et al. Human peritoneal mesothelial cell prostaglandin synthesis: induction of cyclooxygenase mRNA by peritoneal macrophage-derived cytokines. Kidney Int 1994; 46:900–909.

    Article  PubMed  CAS  Google Scholar 

  160. Verhagen HJ, Heijnen Snyder GJ, Vink T, et al. Tissue factor expression on mesothelial cells is induced during in vitro culture—manipulation of culture conditions creates perspectives for mesothelial cells as a source for cell seeding procedures on vascular grafts. Thromb Haemostasis 1995; 74:1096–1102.

    CAS  Google Scholar 

  161. Visser CE, Brouwer Steenbergen JJ, Betjes MG, Koomen GC, Beelen RH, Krediet RT. Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transplant 1995; 10:64–69.

    PubMed  CAS  Google Scholar 

  162. Whawell SA, Scott-Coombes DM, Vipond MN, Terbutt SJ, Thompson JN. Tumor necrosis factor-mediated release of plasminogen activator inhibitor 1 by human mesothelial cells. Br J Surg 1994; 81:214–216.

    Article  PubMed  CAS  Google Scholar 

  163. Witowski J, Jorres A, Coles GA, Williams JD, Topley N. Su-perinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to the induction and stabilization of IL-6 mRNA. Kidney Int 1996; 50:1212–1223.

    Article  PubMed  CAS  Google Scholar 

  164. Witowski J, Breborowicz A, Topley N, Martis L, Knapowski J, Oreopoulos DG. Insulin stimulates the activity of Na+/K(+)-ATPase in human peritoneal mesothelial cells. Perit Dial Int 1997; 17:186–193.

    PubMed  CAS  Google Scholar 

  165. Yung S, Coles GA, Williams JD, Davies M. The source and possible significance of hyaluronan in the peritoneal cavity. Kidney Int 1994; 46:527–533.

    Article  PubMed  CAS  Google Scholar 

  166. Yung S, Thomas GJ, Stylianou E, Williams JD, Coles GA, Davies M. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans. AmJ Pathol 1995; 146:520–529.

    CAS  Google Scholar 

  167. Yung S, Coles GA, Davies M. IL-1 beta, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: relevance to peritonitis in CAPD. Kidney Int 1996; 50:1337–1343.

    Article  PubMed  CAS  Google Scholar 

  168. Zeillemaker AM, Verbrugh HA, Hoynck van Papendrecht AA, Leguit P. CA 125 secretion by peritoneal mesothelial cells. J Clin Pathol 1994; 47:263–265.

    Article  PubMed  CAS  Google Scholar 

  169. Zeillemaker AM, Mul FP, Hoynck van Papendrecht AA, et al. Polarized secretion of interleukin-8 by human mesothelial cells: a role in neutrophil migration. Immunology 1995; 84:227–232.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holmdahl, L. (2000). The Plasmin System, a Marker of the Propensity to Develop Adhesions. In: diZerega, G.S. (eds) Peritoneal Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1194-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1194-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7040-9

  • Online ISBN: 978-1-4612-1194-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics