The Plasmin System, a Marker of the Propensity to Develop Adhesions

  • Lena Holmdahl

Abstract

In healing, tissue remodeling is essential to form the new tissue. The process of tissue remodeling is triggered by the trauma, amplified and orchestrated during inflammation, and concluded when recruited cells have replaced the defect with newly formed tissue. These events require a complex interaction of cytokines, growth factors, and last, but not least, proteases. In this context, the main function of the proteases are to clear the area by degrading damaged tissue and fibrin deposits and to facilitate the migration of cells. For cells to relocate, they are, during certain conditions, able to transverse physical barriers including basal laminae and the extracellular matrix (ECM). Typically this migration occurs during tissue repair, embryogenesis, and spreading of malignant tumors. When cells migrate, they degrade the preceding tissue by a focal pericellular prote-olysis accomplished by locally generated proteases.1

Keywords

Migration Ischemia Heparin Sarcoma Prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vassalli J-D, Pepper MS. Membrane proteases in focus. Nature (Lond) 1994; 370:14–15.CrossRefGoogle Scholar
  2. 2.
    Mignatti P, Rifkin DB. Biology and biochemistry of pro-teinases in tumor invasion. Physiol Rev 1993; 73:161–195.PubMedGoogle Scholar
  3. 3.
    Huber R, Carrell RW. Implication of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 34:15872–15879.Google Scholar
  4. 4.
    Wong AP, Cortez SL, Baricos WH. Role of plasmin and gelatinase in extracellular matrix degradation by cultured rat mesangial cells. Am J Physiol 1992;263:F1112–F1118.PubMedGoogle Scholar
  5. 5.
    Saksela O, Rifkin DB. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 1990; 110:767–775.PubMedCrossRefGoogle Scholar
  6. 6.
    Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 1989; 109:309–315.PubMedCrossRefGoogle Scholar
  7. 7.
    Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin DB. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system.J Cell Biol 1990; 111:757–763.PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy G, Ward R, Gavrilovic J, Atkinson S. Physiological mechanisms for metalloproteinase activation. Matrix Suppl 1992: 1:224–230.PubMedGoogle Scholar
  9. 9.
    Murphy G, Atkinson S, Ward R, Gavrilovic J, Reynolds JJ. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci 1992; 667:1–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Petersen LC, Lund LR, Nielsen LS, Dano K, Skriver L. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity.J Biol Chem 1988; 263:11189–11195.PubMedGoogle Scholar
  11. 11.
    Mignatti P, Rifkin DB, Welgus HG, Parks WC. Proteinases and tissue remodelling. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press, 1996:427–474.Google Scholar
  12. 12.
    Pannell R, Black J, Gurewich V. The complementary modes of action of tissue plasminogen activator and pro-urokinase by their synergistic effect on clot lysis may be explained. J Clin Invest 1988; 81:853–859.PubMedCrossRefGoogle Scholar
  13. 13.
    Padro T, van den Hoogen CM, Emeis JJ. Distribution of tissue-type plasminogen activator (activity and antigen) in rat tissues. Blood Coagul Fibrinolysis 1990; 1:601–608.PubMedGoogle Scholar
  14. 14.
    Risberg B, Eriksson E, Björk S, Hansson GK. Immuno-histochemical localization of plasminogen activators in human saphenous veins. Thromb Res 1986; 37:301–308.CrossRefGoogle Scholar
  15. 15.
    van Hinsbergh VWM, Kooistra T, Scheffer MA, van Bockel JH, van Muijen GNP. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood 1990; 75:1490–1497.PubMedGoogle Scholar
  16. 16.
    Wodzinski MA, Bardhan KD, Reilly JT, Preston FE. Reduced tissue type plasminogen activator activity of the gastroduodenal mucosa in peptic ulcer disease. Gut 1993; 34:1310–1314.PubMedCrossRefGoogle Scholar
  17. 17.
    Thompson JN, Paterson Brown S, Harbourne T, Whawell SA, Kalodiki E, Dudley MAE. Reduced human peritoneal plasminogen activating activity: possible mechanism of adhesion formation. Br J Surg 1989; 76:382–384.PubMedCrossRefGoogle Scholar
  18. 18.
    Vipond MN, Whawell SA, Thompson JN, Dudley HA. Peritoneal fibrinolytic activity and intra-abdominal adhesions. Lancet 1990; 335:1120–1122.PubMedCrossRefGoogle Scholar
  19. 19.
    Whawell SA, Wang Y, Fleming KA, Thompson EM, Thompson JN. Localization of plasminogen activator inhibitor-1 production in inflamed appendix by in situ mRNA hybridization. J Pathol 1993; 169:67–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Whawell SA, Vipond MN, Scott-Coombes D, Thompson JN. Plasminogen activator inhibitor 2 reduces peritoneal fibrinolytic activity in inflammation. Br J Surg 1993; 80:107–109.PubMedCrossRefGoogle Scholar
  21. 21.
    Nkere UU, Whawell SA, Thompson EM, Thompson JN, Taylor KM. Changes in pericardial morphology and fibri-nolytic activity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1993; 106:339–345.PubMedGoogle Scholar
  22. 22.
    Holmdahl L, Eriksson E, Risberg B. Fibrinolysis in human peritoneum during operation. Surgery (St. Louis) 1996; 119:701–705.CrossRefGoogle Scholar
  23. 23.
    Holmdahl L, Falkenberg M, Ivarsson ML, Risberg B. Plas-minogen activator and inhibitors in peritoneal tissue. AP-MIS 1997; 105:25–30.Google Scholar
  24. 24.
    Holmdahl L, Eriksson E, Risberg B. Measurement of fibri-nolytic components in human tissue. Scand J Clin Lab Invest 1997; 57:445–452.PubMedCrossRefGoogle Scholar
  25. 25.
    Holmdahl L, Eriksson E, Eriksson Bl, Risberg B. Depression of peritoneal fibrinolysis during surgery is a local response to trauma. Surgery (St. Louis) 1998; 123:539–544.CrossRefGoogle Scholar
  26. 26.
    Ivarsson M-L, Holmdahl L, Eriksson E, Söderberg R, Risberg B. Expression and kinetics of fibrinolytic components in plasma and peritoneum during abdominal surgery. Fibrinolysis 1998; 12:61–67.Google Scholar
  27. 27.
    Ranby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704:461–469.PubMedCrossRefGoogle Scholar
  28. 28.
    Verheijen JH, Chang GTG, Kluft C. Evidence for the occurrence of a fast-acting inhibitor for tissue-type plasminogen activator in human plasma. Thromb Haemostasis 1984; 51:392–395.Google Scholar
  29. 29.
    Juhan-Vague I, Moerman B, DeCock F, Aillaud MF, Collen D. Plasma levels of a specific inhibitor of tissue-type plasminogen activator (and urokinase) in normal and pathological conditions. Thromb Res 1984; 33:523–530.PubMedCrossRefGoogle Scholar
  30. 30.
    Drapier JC, Tenu JP, Lemaire G, Petit JF. Regulation of plasminogen activator secretion in mouse peritoneal macrophages. Biochimie (Paris), 1979; 61:463–47l.CrossRefGoogle Scholar
  31. 31.
    Freyria AM, Paul J, Belleville J, Broyer P, Eloy R. Rat peritoneal macrophage procoagulant and fibrinolytic activities. An expression of the local inflammatory response. Comp Biochem Physiol A 1991; 99:517–524.PubMedCrossRefGoogle Scholar
  32. 32.
    Grulich-Henn J, Preissner KT, Muller-Berghaus G. Hep-arin stimulates fibrinolysis in mesothelial cells by selective induction of tissue-plasminogen activator but not plasminogen activator inhibitor-1 synthesis. Thromb Haemostasis 1990; 64:420–425.Google Scholar
  33. 33.
    Idell S, Zwieb C, Kumar A, Koenig KB, Johnson AR. Pathways of fibrin turnover of human pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 1992; 7:414–426.PubMedGoogle Scholar
  34. 34.
    Ivarsson M-L, Holmdahl L, Falk P, Mölne J, Risberg B. Characterization and f ibrinolytical properties of mesothelial cells isolated from peritoneal lavage. Scand J Clin Lab Invest 1998; 58:195–204.PubMedCrossRefGoogle Scholar
  35. 35.
    Ranby M, Bergsdorf N, Nilsson T. Enzymatic properties of the one-and two-chain form of tissue plasminogen activator. Thromb Res 1982; 27:175–183.PubMedCrossRefGoogle Scholar
  36. 36.
    Grondahl-Hansen J, Christensen IJ, Rosenquist C, et al. High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 1993; 53:2513–2521.PubMedGoogle Scholar
  37. 37.
    Nykjaer A, Petersen CM, Moller B, Andreasen PA, Glie-mann J. Identification and characterization of urokinase receptors in natural killer cells and T-cell-derived lym-phokine activated killer cells. FEBS Lett 1992; 300:13–17.PubMedCrossRefGoogle Scholar
  38. 38.
    Vassalli JD, Wohlwend A, Belin D. Urokinase-catalyzed plasminogen activation at the monocyte/macrophage cell surface: a localized and regulated proteolytic system. Curr Top Microbiol Immunol 1992; 181:65–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Casslen B, Gustavsson B, Astedt B. Cell membrane receptors for urokinase plasminogen activator are increased in malignant ovarian tumours. Eur J Cancer 1991; 27:1445–1448.PubMedCrossRefGoogle Scholar
  40. 40.
    Vassalli JD, Dayer JM, Wohlwend A, Belin D. Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macro-phages. J Exp Med 1984; 159:1653–1668.PubMedCrossRefGoogle Scholar
  41. 41.
    Lu HR, Wu Z, Pauwels P, Lijnen HR, Collen D. Comparative thrombolytic properties of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (u-PA) and KlK2Pu (a t-PA/u-PA chimera) in a combined arterial and venous thrombosis model in the dog.J Am Coll Cardiol 1992; 19:1350–1359.PubMedCrossRefGoogle Scholar
  42. 42.
    Collen D, Lijnen RH. Fibrin-specific fibrinolysis. Ann NY Acad Sci 1992; 667:259–271.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamamoto K, Loskutoff DJ. Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue-type plasminogen activator. J Clin Invest 1996; 97:2440–2451.PubMedCrossRefGoogle Scholar
  44. 44.
    Moller LB. Structure and function of the urokinase receptor. Blood Coagul Fibrinolysis 1993; 4:293–303.PubMedCrossRefGoogle Scholar
  45. 45.
    Blasi F. Urokinase and urokinase receptor: a paracrine/au-tocrine system regulating cell migration and invasiveness. Bioessays 1993; 15:105–111.PubMedCrossRefGoogle Scholar
  46. 46.
    Duffy MJ. Urokinase-type plasminogen activator and malignancy. Fibrinolysis 1993; 7:295–302.CrossRefGoogle Scholar
  47. 47.
    van Hinsbergh VWM, Kooistra T, van den Berg EA. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo. Blood 1988; 72:1467–1473.PubMedGoogle Scholar
  48. 48.
    Emeis JJ, Kooistra T. Interleukin-1 and lipopolysaccarides induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 1986; 163:1260–1266.PubMedCrossRefGoogle Scholar
  49. 49.
    Nordt TK, Klassen KJ, Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler Thromb 1993; 13:1822–1828.PubMedCrossRefGoogle Scholar
  50. 50.
    Wohlwend A, Belin D, Vassalli J-D. Plasminogen activator-specific inhibitors in mouse machrophages: in vivo and vitro modulation of their synthesis and secretion. J Immunol 1987; 139:1278–1284.PubMedGoogle Scholar
  51. 51.
    Kuraoka S, Campeau JD, Rodgers KE, Nakamura RM, di-Zerega GS. Effects of interleukin-1 (IL-1) on postsurgical macrophage secretion of protease and protease inhibitor activities. J Surg Res 1992; 52:71–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Idell S, Zwieb C, Boggaram J, Holiday D, Johnson AR, Raghu G. Mechanisms of fibrin formation and lysis by human lung fibroblasts: influence of TGF-beta and TNF-alpha. AmJ Physiol 1992;263:L487–L494.Google Scholar
  53. 53.
    Carmassi F, De Negri F, Morale M, Puccetti R, Song KY, Chung SI. Assessment of coagulation and fibrinolysis in synovial fluid of rheumatoid arthritis patients. Fibrinolysis 1994; 8:162–171.CrossRefGoogle Scholar
  54. 54.
    Casslen B, Urano S, Ny T. Progesterone regulation of plas-minogen activator inhibitor 1 (PAI-1) antigen and mRNA levels in human endometrial stromal cells. Thromb Res 1992; 66:75–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Erickson LA, Ginsberg MH, Loskutoff DJ. Detection and partial characterization of an inhibitor of plasminogen activator in human platelets. J Clin Invest 1984; 74:1465–1472.PubMedCrossRefGoogle Scholar
  56. 56.
    Schwartz BS, Monroe MC, Bradshaw JD. Endotoxin-in-duced production of plasminogen activator inhibitor by human monocytes is autonomous and can be inhibited by lipid X. Blood 1989; 73:2188–2195.PubMedGoogle Scholar
  57. 57.
    Eriksson E, Risberg B. Tissue plasminogen activator and its inhibitor following major surgery in relation to ventilatory pattern. Acta Chir Scand 1988; 154:57–60.PubMedGoogle Scholar
  58. 58.
    Kluft C, De Bart ACW, Bartheis M. Short term extreme increases in plasminogen activator inhibitor (PAI-1) in plasma of polytrauma patients. Fibrinolysis 1988; 2:221–226.Google Scholar
  59. 59.
    Eriksson BI, Eriksson E, Gyzander E, Teger-Nilsson A-C, Risberg B. Thrombosis after hip replacement. Relationship to the fibrinolytic system. Acta Orthop Scand 1989; 60:159–163.PubMedCrossRefGoogle Scholar
  60. 60.
    Engebretsen LF, Keirulf P, Brandtzaeg P. Extreme plasminogen activatior inhibitor and endotoxin values in patients with meningococcal disease. Thromb Res 1986; 42:713–716.PubMedCrossRefGoogle Scholar
  61. 61.
    Wilson HM, Reid FJ, Brown PA, Power DA, Haites NE, Booth NA. Effect of transforming growth factor-beta 1 on plasminogen activators and plasminogen activator in-hibitor-1 in renal glomerular cells. Exp Nephrol 1993; 1:343–350.PubMedGoogle Scholar
  62. 62.
    Gerwin BI, Keski Oja J, Seddon M, Lechner JF, Harris CC. TGF-beta 1 modulation of urokinase and PAI-1 expression in human bronchial epithelial cells. Am J Physiol 1990; 259:L262–L269.PubMedGoogle Scholar
  63. 63.
    Wiman B, Almquist Å, Sigurdardottir O, Lindahl T. Plasminogen activator inhibitor 1 (PAI) is bound to vitro-nectin in plasma. FEBS Lett 1988, 242:125–128.PubMedCrossRefGoogle Scholar
  64. 64.
    Podor TJ, Loskutoff DJ. Immunoelectron microscopic localization of type 1 plasminogen activator inhibitor in the extracellular matrix of transforming growth factor-ß activated endothelial cells. Ann NYAcad Sei 1992; 667:46–49.CrossRefGoogle Scholar
  65. 65.
    Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 1987; 69:381–387.PubMedGoogle Scholar
  66. 66.
    Sancho E, Tonge DW, Hockney RC, Booth NA. Purification and characterization of active and stable recombinant plasminogen-activator inhibitor accumulated at high levels in Escherichia coli. Eur J Biochem 1994; 224:125–134.PubMedCrossRefGoogle Scholar
  67. 67.
    Kawano T, Morimoto K, Uemura Y. Urokinase inhibitor in human placenta. Nature (Lond) 1968; 217:253–254.CrossRefGoogle Scholar
  68. 68.
    Astedt B, Lecander I, Ny T. The placental type plasminogen activator inhibitor PAI-2. Fibrinolysis 1987; 1:203–208.CrossRefGoogle Scholar
  69. 69.
    Marshall BC, Xu QP, Rao NV, Brown BR, Hoidal JR. Pulmonary epithelial cell urokinase-type plasminogen activator. Induction by interleukin-1 beta and tumor necrosis factor-alpha. J Biol Chem 1992; 267:11462–11469.PubMedGoogle Scholar
  70. 70.
    Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol 1990; 68:1–19.PubMedCrossRefGoogle Scholar
  71. 71.
    Heeb MJ, Espana F, Geiger M, Collen D, Stump DC, Griffin JH. Immunological identity to heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3. J Biol Chem 1987; 262:15813–15816.PubMedGoogle Scholar
  72. 72.
    Ecke S, Geiger M, Resch I, et al. Inhibition of tissue kallikrein by protein C inhibitor. Evidence for identity of protein C inhibitor with the kallikrein binding protein. J Biol Chem 1992; 267:7048–7052.PubMedGoogle Scholar
  73. 73.
    Plow EF, Felez J, Miles LA. Cellular regulation of fibrinolysis. Thromb Haemostasis 1991; 66:32–36.Google Scholar
  74. 74.
    Weisel JW, Cederholm-Williams SA. Fibrinogen and fibrin. In: Domb AJ, Kost J, Wiseman DM, eds. Handbook of Biodegradable Polymers. Amsterdam: Harwood, 1997:347–365.Google Scholar
  75. 75.
    Harris ES, Morgan RF, Rodeheaver GT. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery (St. Louis) 1995; 17:663–669.CrossRefGoogle Scholar
  76. 76.
    Falk E. Dynamics in thrombus formation. Ann NY Acad Sci 1992; 667:204–223.PubMedCrossRefGoogle Scholar
  77. 77.
    Muzaffar TZ, Youngson GG, Bryce WAJ, Dhall DP. Studies on fibrin formation and effects of dextran. Thromb Haemostasis 1972; 28:244–256.Google Scholar
  78. 78.
    Ellis H. The aetiology of postoperative abdominal adhesions: an experimental study. Br J Surg 1962; 50:10–16.PubMedCrossRefGoogle Scholar
  79. 79.
    James DCO, Ellis H, Hugh TB. The effect of streptokinase on experimental intraperitoneal adhesion formation. J Pathol Bacteriol 1965; 90:279–287.PubMedCrossRefGoogle Scholar
  80. 80.
    Gervin AS, Puckett CL, Silver D. Serosal hypofibrinolysis. Am J Surg 1973; 125:80–88.PubMedCrossRefGoogle Scholar
  81. 81.
    Buckman RF, Woods M, Sargent L, Gervin AS. A unifying pathogenetic mechanism in the etiology of intraperitoneal adhesions. J Surg Res 1976; 20:1–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Raftery AT. Effect of peritoneal trauma on peritoneal fibrinolytic activity and intraperitoneal adhesion formation. Eur Surg Res 1981; 13:397–401.PubMedCrossRefGoogle Scholar
  83. 83.
    Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 1973; 115:375–392.PubMedGoogle Scholar
  84. 84.
    Myhre-Jensen O, Bergman Larsen S, Astrup T. Fibrinolytic activity in serosal and synovial membranes. Arch Pathol Lab Med 1969; 88:623–630.Google Scholar
  85. 85.
    Porter JM, Ball AP, Silver D. Mesothelial fibrinolysis. J Tho-rac Cardiovasc Surg 1971; 62:725–730.Google Scholar
  86. 86.
    Scott-Coombes DM, Whawell SA, Vipond MN, Thompson JN. The human intraperitoneal fibrinolytic response to elective surgery. Br J Surg 1995; 82:414–417.PubMedCrossRefGoogle Scholar
  87. 87.
    Raftery AT. Regeneration of peritoneum: a fibrinolytic study. J Anat 1979; 129:659–664.PubMedGoogle Scholar
  88. 88.
    Merio G, Fausone G, Barbero C, Castagna B. Fibrinolytic activity of the human peritoneum. Eur Surg Res 1980; 12:433–438.CrossRefGoogle Scholar
  89. 89.
    Pugatch EMJ, Poole JCF. Inhibitor of fibrinolysis from mesothelium. Nature (Lond) 1969; 221:269–270.CrossRefGoogle Scholar
  90. 90.
    Hau T, Payne WD, Simmons RL. Fibrinolytic activity of the peritoneum during experimental peritonitis. Surg Gy-necol Obstet 1979; 148:415–418.Google Scholar
  91. 91.
    Lundin C, Sullins KE, White NA, Clem MF, Debowes RM, Pfeiffer CA. Induction of peritoneal adhesions with small intestinal ischaemia and distention in the foal. Equine Vet J 1989; 21:451–458.PubMedCrossRefGoogle Scholar
  92. 92.
    Fedor E, Mikô I, Nagy T. The role of ischaemia in the formation of postoperative intra-abdominal adhesions. Acta Chir Hung 1983; 145:3–8.Google Scholar
  93. 93.
    Nishimura K, Nakamura RM, diZerega GS. Ibuprofen inhibition of postsurgical adhesion formation: a time and dose response biochemical evaluation in rabbits. J Surg Res 1984; 36:115–124.PubMedCrossRefGoogle Scholar
  94. 94.
    Nishimura K, Nakamura RM, diZerega GS. Biochemical evaluation of postsurgical wound repair: prevention of in-traperitoneal adhesion formation with ibuprofen. J Surg Res 1983; 34:219–226.PubMedCrossRefGoogle Scholar
  95. 95.
    Rodgers K, Girgis W, diZerega GS, Bracken K, Richer L. Inhibition of postsurgical adhesions by liposomes containing nonsteroidal antiinflammatory drugs. Int J Fertil 1990; 35:315–320.PubMedGoogle Scholar
  96. 96.
    Rodgers K, Girgis W, diZerega GS, Johns DB. Intraperi-toneal tolmetin prevents postsurgical adhesion formation in rabbits. Int J Fertil 1990; 35:40–45.PubMedGoogle Scholar
  97. 97.
    Abe H, Rodgers KE, Campeau JD, Girgis W, Ellefson D, diZerega GS. The effect of intraperitoneal administration of sodium tolmetin-hyaluronic acid on the postsurgical cell infiltration in vivo. J Surg Res 1990; 49:322–327.PubMedCrossRefGoogle Scholar
  98. 98.
    Hill West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA. Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorb-able hydrogel barriers. Obstet Gynecol 1994; 83:59–64.PubMedGoogle Scholar
  99. 99.
    Hill West JL, Dunn RC, Hubbell JA. Local release of fibri-nolytic agents for adhesion prevention. J Surg Res 1995; 59:759–763.PubMedCrossRefGoogle Scholar
  100. 100.
    Vipond MN, Whawell SA, Thompson JN, Dudley HAF. Effect of experimental peritonitis and ischemia on peritoneal fibrinolytic activity. Eur J Surg 1994; 160:471–477.PubMedGoogle Scholar
  101. 101.
    Scott-Coombes DM, Whawell SA, Thompson JN. The operative peritoneal fibrinolytic response to abdominal operation. Eur J Surg 1995; 161:395–399.PubMedGoogle Scholar
  102. 102.
    Kluft C. Fibrinolytic shut-down after surgery. In: Sawaya R, ed. Fibrinolysis and the Central Nervous System, Philadelphia: Hanley & Belfus, 1990:127–140.Google Scholar
  103. 103.
    D’Angelo A, Kluft C, Verheijen JH, Rijken DC, Mozzi E. Fibrinolytic shutdown after surgery: impairment of the balance between tissue type plasminogen activator and its specific inhibitor. Eur J Clin Invest 1985; 15:308–312.PubMedCrossRefGoogle Scholar
  104. 104.
    Holmdahl L, Eriksson E, Rippe B, Risberg B. Kinetics of transperitoneal tissue-type plasminogen (t-PA) absorption. Fibrinolysis 1996; 10:1–7.Google Scholar
  105. 105.
    Parmer RJ, Mahata M, Mahata S, Sebald MT, O’Connor DT, Miles LA. Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. J Biol Chem 1997: 272:1976–1982.PubMedCrossRefGoogle Scholar
  106. 106.
    Emeis JJ, van den Hoogen CM, Diglio CA. Synthesis, storage and regulated secretion of tissue-type plasminogen activator by cultured rat heart endothelial cells. Fibrinolysis 1998; 12:9–16.Google Scholar
  107. 107.
    Sitter T, Gödde M, Spannagl M, Fricke H, Kooistra T. Intraperitoneal coagulation and fibrinolysis during inflammation: in vivo and in vitro observations. Fibrinolysis 1996; 10(suppl2):99–104.Google Scholar
  108. 108.
    Tietze L, Elbrecht A, Schauerte C, et al. Modulation of pro-and antifibrinolytic properties of human peritoneal mesothelial cells by transforming growth factor ßl (TGF-ßl), tumor necrosis factor a (TNF-a) and interleukin lß (IL-lß). Thromb Haemostasis 1998; 79:362–370.Google Scholar
  109. 109.
    Roberts AB, Sporn MB. Transforming growth factor-ß. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press, 1996: 275–308.Google Scholar
  110. 110.
    Whawell SA, Thompson JN. Cytokine-induced release of plasminogen activator inhibitor-1 by human mesothelial cells. Eur J Surg 1995; 161:315–317.PubMedGoogle Scholar
  111. 111.
    Lundgren CH, Sawa H, Sobel BE, Fujii S. Modulation of expression of monocyte/macrophage plasminogen activator activity and its implications for attenuation of vascu-lopathy. Circulation 1994; 90:1927–1934.PubMedCrossRefGoogle Scholar
  112. 112.
    Weibel M, Majno AG. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am J Surg 1973; 126:345–353.PubMedCrossRefGoogle Scholar
  113. 113.
    Luijendijk RW, de Lange DCD, Wauters CCAP, et al. Foreign material in postoperative adhesions. Ann Surg 1996; 223:242–248.PubMedCrossRefGoogle Scholar
  114. 114.
    Ivarsson M-L, Bergström M, Eriksson E, Risberg B, Holmdahl L. Tissue markers as predictors of post-surgical adhesions. Br J Surg 1998; 85:1549–1554.PubMedCrossRefGoogle Scholar
  115. 115.
    Diamond MP, Daniell JF, Feste J, et al. Adhesion reformation and de novo adhesion formation after reproductive pelvic surgery. Fertil Steril 1987; 47:864–866.PubMedGoogle Scholar
  116. 116.
    Menzies D, Ellis H. Intestinal obstruction from adhesions—how big is the problem? Ann R Coll Surg Engl 1990; 72:60–63.PubMedGoogle Scholar
  117. 117.
    Sancho E, Declerck PJ, Price NC, Kelly SM, Booth NA. Conformational studies on plasminogen activator inhibitor (PAI-1) in active, latent, substrate, and cleaved forms. Biochemistry 1995; 34:1064–1069.PubMedCrossRefGoogle Scholar
  118. 118.
    Aalto M, Kulonen E, Penttinen R, Renvall S. Collagen synthesis in cultured mesothelial cells. Acta Chir Scand 1981; 147:1–6.PubMedGoogle Scholar
  119. 119.
    Arid A, Tazuke SI, Attar E, Kliman HJ, Olive DL. Inter-leukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod 1996; 2:40–45.CrossRefGoogle Scholar
  120. 120.
    Baer AN, Green FA. Cyclooxygenase activity of cultured human mesothelial cells. Prostaglandins 1993; 46:37–49.PubMedCrossRefGoogle Scholar
  121. 121.
    Beavis J, Harwood JL, Coles GA, Williams JD. Synthesis of phospholipids by human peritoneal mesothelial cells. Perit Dial Int 1994; 14:348–355.PubMedGoogle Scholar
  122. 122.
    Bermudez E, Everitt J, Walker C. Expression of growth factor and growth factor receptor RNA in rat pleural mesothelial cells in culture. Exp Cell Res 1990; 190:91–98.PubMedCrossRefGoogle Scholar
  123. 123.
    Betjes MGH, Tuk CW, Struijk DG, et al. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-a, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J Infect Dis 1992; 168:1202–1210.CrossRefGoogle Scholar
  124. 124.
    Bittinger F, Klein CL, Skarke C, et al. PECAM-1 expression in human mesothelial cells: an in vitro study. Patho-biology 1996; 64:320–327.Google Scholar
  125. 125.
    Bottles KD, Laszik Z, Morrissey JH, Kinasewitz GT. Tissue factor expression in mesothelial cells: induction both in vivo and in vitro. Am J Respir Cell Mol Biol 1997; 17:164–172.PubMedGoogle Scholar
  126. 126.
    Breborowicz A, Korybalska K, Grzybowski A, Wiec-zorowska Tobis K, Martis L, Oreopoulos DG. Synthesis of hyaluronic acid by human peritoneal mesothelial cells: effect of cytokines and dialysate. Perit Dial Int 1996; 16:374–378.PubMedGoogle Scholar
  127. 127.
    Bult H, Coene M-C, Rampart M, Herman AG. Complement derived factors and prostacyclin formation by rabbit isolated peritoneum and cultured mesothelial cells. Agents Actions Suppl 1984; 14:237–247.PubMedGoogle Scholar
  128. 128.
    Cannistra SA, Ottensmeier C, Tidy J, DeFranzo B. Vascular cell adhesion molecule-1 expressed by peritoneal mesothelium partly mediates the binding of activated human T lymphocytes. Exp Hematol 1994; 22:996–1002.PubMedGoogle Scholar
  129. 129.
    Cicila GT, O’Connel TM, Hahn WC, Reinwald JG. Cloned cDNA sequence for the human mesothelial protein ‘mesosecrin’ discloses its identity as a plasminogen activator inhibitor (PAI-1) and a recent evolutionary change in transcript processing J Cell Sci 1989; 94:1–10.Google Scholar
  130. 130.
    Coene MC, Solheid C, Clates M, Herman AG. Prosta-glandin production by cultured mesothelial cells. Arch Int Pharmacodyn 1981; 249:316–318.PubMedGoogle Scholar
  131. 131.
    Coene M-C, van Hove C, Claeys M, Herman A. Arachi-donic acid metabolism by cultured mesothelial cells. Different transformations of exogenously added and en-dogenously released substrate. Biochim Biophys Acta 1982; 710:437–445.PubMedCrossRefGoogle Scholar
  132. 132.
    Davies M, Stylianou E, Yung S, Thomas GJ, Coles GA, Williams JD. Proteoglycans of CAPD-dialysate fluid and mesothelium. Contrib Nephrol 1990; 85:134–141.PubMedGoogle Scholar
  133. 133.
    Dobbie JW, Pavlina T, Lloyd J, Johnson RC. Phosphatidyl-choline synthesis by peritoneal mesothelium: its implication for peritoneal dialysis. Am J Kidney Dis 1988; 12:31–36.PubMedGoogle Scholar
  134. 134.
    Douvdevani A, Rapoport J, Konforty A, Argov S, Ovnat A, Chaimovitz C. Human peritoneal mesothelial cells synthesize IL-1 alpha and beta. Kidney Int 1994; 46:993–1001.PubMedCrossRefGoogle Scholar
  135. 135.
    Ferriola PC, Stewart W. Fibronectin expression and organization in mesothelial and mesothelioma cells. Am J Physiol 1996;271:L804–L812.PubMedGoogle Scholar
  136. 136.
    Griffith DE, Miller EJ, Gray LD, Idell S, Johnson AR. Interleukin-1-mediated release of interleukin-8 by asbestos-stimulated human pleural mesothelial cells. Am J Respir Cell Mol Biol 1994; 10:245–252.PubMedGoogle Scholar
  137. 137.
    Harvey W, Amlot PL. Collagen production by human mesothelial cells in vitro. J Pathol 1983; 139:337–347.PubMedCrossRefGoogle Scholar
  138. 138.
    Hjelle JT, Golinska BT, Waters DC, et al. Lectin staining of peritoneal mesothelial cells in vitro. Perit Dial Int 1991; 11:307–316.PubMedGoogle Scholar
  139. 139.
    Hjelle JT, Ho AK, Dobbie JW, Steidley KR, Duffield R. Evidence of muscarinic acetylcholine receptors and GTP-binding proteins in peritoneal mesothelial cells in vitro. Adv Perif Dial 1993: 9:303–306.Google Scholar
  140. 140.
    Honda A, Noguchi N, Takehara H, Ohashi Y, Asuwa N, Mori Y. Cooperative enhancement of hyaluronic acid synthesis by combined use of IGF-1 and EGF, and inhibition by tyrosine kinase inhibitor genistein, in cultured mesothelial cells from rabbit pericardial cavity. J Cell Sci 1991; 98:91–98.PubMedGoogle Scholar
  141. 141.
    Honda A, Sekiguchly, Mori Y. Prostaglandin E2 stimulates cyclic AMP-mediated hyaluronan synthesis in rabbit pericardial mesothelial cells. Biochem J 1993; 292:497–502.PubMedGoogle Scholar
  142. 142.
    Jonjic N, Peri G, Bernasconi S, et al. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 1992; 176:1165–1174.PubMedCrossRefGoogle Scholar
  143. 143.
    Kawata Y, Mimuro J, Kaneko M, Shimada K, Sakata Y. Expression of plasminogen activator inhibitor 2 in the adult and embryonic mouse tissues. Thromb Haemostasis 1996; 76:569–576.Google Scholar
  144. 144.
    Korybalska K, Breborowicz A, Martis L, Oreopoulos DG. In vitro detection of hydrogen peroxide in mesothelial cells. Adv Perit Dial 1996; 12:7–10.PubMedGoogle Scholar
  145. 145.
    Kumar A, Koenig KB, Johnson AR, Idell S. Expression and assembly of procoagulant complexes by human pleural mesothelial cells. Thromb Haemostasis 1994; 71:587–592.Google Scholar
  146. 146.
    Lanfrancone L, Boraschi D, Ghiara P, et al. Human peritoneal mesothelial cells produce many cytokines (granu-locyte colony-stimulating factor [CSF], granulocyte-monocyte-CSF, macrophage-CSF, interleukin-1 [IL-1], and IL-6) and are activated and stimulated to grow by IL-1. Blood 1992; 80:2835–2842.PubMedGoogle Scholar
  147. 147.
    Marshall BC, Santana A, Xu QP, et al. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression. J Clin Invest 1993; 91:1792–1799.PubMedCrossRefGoogle Scholar
  148. 148.
    Morganti M, Budianto D, Arno Takiy B, et al. Detection of minimal but significant amount of von Willebrand factor in human omentum mesothelial cell cultures. Biomed Pharmacother 1996; 50:369–372.PubMedCrossRefGoogle Scholar
  149. 149.
    Owens MW, Grisham MB. Nitric oxide synthesis by rat pleural mesothelial cells: induction by cytokines and lipopolysaccaride. Am J Physiol 1993; 265:110–116.Google Scholar
  150. 150.
    Raftery AT. An enzyme histochemical study of mesothelial cells in rodents.J Anat 1973; 115:365–373.PubMedGoogle Scholar
  151. 151.
    Rougier JP, Moullier P, Piedagnel R, Ronco PM. Hyper-osmolality suppresses but TGF beta 1 increases MMP9 in human peritoneal mesothelial cells. Kidney Int 1997; 51:337–347.PubMedCrossRefGoogle Scholar
  152. 152.
    Rougier JP, Guia S, Hagege, Nguyen G, Ronco PM. PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures: transcriptional regulation by TGF-beta 1. Kidney Int 1998; 54:87–98.PubMedCrossRefGoogle Scholar
  153. 153.
    Shanthaveerappa TR, Bourne GH. Histochemical studies on the localization of oxidative and dephosphorylating enzymes and esterases in the peritoneal mesothelial cells. Histochemistry 1965; 5:331–338.CrossRefGoogle Scholar
  154. 154.
    Shostak A, Pivnik E, Gotloib L. Cultured rat mesothelial cells generate hydrogen peroxide: a new player in peritoneal defense? J Am Soc Nephrol 1996; 7:2371–2378.PubMedGoogle Scholar
  155. 155.
    Sitter T, Toet K, Fricke H, Schiffl H, Held E, Kooistra T. Modulation of procoagulant and f ibrinolytic system com-ponents of mesothelial cells by inflammatory mediators. Am J Physiol 1996;271:R1256–R1263.PubMedGoogle Scholar
  156. 156.
    Suassuna JH, Das Neves FC, Hartley RB, Ogg CS, Cameron JS. Immunohistochemical studies of the peritoneal membrane and infiltrating cells in normal subjects and in patients on CAPD. Kidney Int 1994; 46:443–454.PubMedCrossRefGoogle Scholar
  157. 157.
    Topley N, Jörres A, Luttman W, et al. Human peritoneal mesothelial cells synthesize interleukin-6: induction by II-lß and TNF-α. Kidney Int 1993; 43:226–233.PubMedCrossRefGoogle Scholar
  158. 158.
    Topley N, Jörres A, Luttman W, et al. Human peritoneal mesothelial cells synthesize interleukin-8: synergistic induction by interleukin-lß and tumor necrosis factor-a. AmJ Pathol 1993; 142:1876–1886.Google Scholar
  159. 159.
    Topley N, Petersen MM, Mackenzie R, et al. Human peritoneal mesothelial cell prostaglandin synthesis: induction of cyclooxygenase mRNA by peritoneal macrophage-derived cytokines. Kidney Int 1994; 46:900–909.PubMedCrossRefGoogle Scholar
  160. 160.
    Verhagen HJ, Heijnen Snyder GJ, Vink T, et al. Tissue factor expression on mesothelial cells is induced during in vitro culture—manipulation of culture conditions creates perspectives for mesothelial cells as a source for cell seeding procedures on vascular grafts. Thromb Haemostasis 1995; 74:1096–1102.Google Scholar
  161. 161.
    Visser CE, Brouwer Steenbergen JJ, Betjes MG, Koomen GC, Beelen RH, Krediet RT. Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transplant 1995; 10:64–69.PubMedGoogle Scholar
  162. 162.
    Whawell SA, Scott-Coombes DM, Vipond MN, Terbutt SJ, Thompson JN. Tumor necrosis factor-mediated release of plasminogen activator inhibitor 1 by human mesothelial cells. Br J Surg 1994; 81:214–216.PubMedCrossRefGoogle Scholar
  163. 163.
    Witowski J, Jorres A, Coles GA, Williams JD, Topley N. Su-perinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to the induction and stabilization of IL-6 mRNA. Kidney Int 1996; 50:1212–1223.PubMedCrossRefGoogle Scholar
  164. 164.
    Witowski J, Breborowicz A, Topley N, Martis L, Knapowski J, Oreopoulos DG. Insulin stimulates the activity of Na+/K(+)-ATPase in human peritoneal mesothelial cells. Perit Dial Int 1997; 17:186–193.PubMedGoogle Scholar
  165. 165.
    Yung S, Coles GA, Williams JD, Davies M. The source and possible significance of hyaluronan in the peritoneal cavity. Kidney Int 1994; 46:527–533.PubMedCrossRefGoogle Scholar
  166. 166.
    Yung S, Thomas GJ, Stylianou E, Williams JD, Coles GA, Davies M. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans. AmJ Pathol 1995; 146:520–529.Google Scholar
  167. 167.
    Yung S, Coles GA, Davies M. IL-1 beta, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: relevance to peritonitis in CAPD. Kidney Int 1996; 50:1337–1343.PubMedCrossRefGoogle Scholar
  168. 168.
    Zeillemaker AM, Verbrugh HA, Hoynck van Papendrecht AA, Leguit P. CA 125 secretion by peritoneal mesothelial cells. J Clin Pathol 1994; 47:263–265.PubMedCrossRefGoogle Scholar
  169. 169.
    Zeillemaker AM, Mul FP, Hoynck van Papendrecht AA, et al. Polarized secretion of interleukin-8 by human mesothelial cells: a role in neutrophil migration. Immunology 1995; 84:227–232.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Lena Holmdahl

There are no affiliations available

Personalised recommendations