Principles in Hemostasis

  • Gernold Wozniak


Since 1905, when Morowitz1 first initiated clotting research and summarized his classical scheme, scientific interest in hemostasis has increased enormously. In 1955 Deutsch2 wrote a renowned book titled Blood Coagulation Factors and began his preface as follows:


Tissue Factor Pathway Inhibitor Split Product Activate Coagulation Factor Lupus Anticoagulant Hemostatic Plug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morawitz P. Die Chemie der Blutgerinnung. Ergeh Physiologie, Biochemie, Biophysik, und Psychophysik. 1905;4:307–422.Google Scholar
  2. 2.
    Deutsch E. Blutgerinnungsfaktoren. Vienna: Franz Deuticke;1955.Google Scholar
  3. 3.
    Griffin JH, Evatt B, Zimmerman TS, Kleiss AJ, Wideman C. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370–1373.PubMedCrossRefGoogle Scholar
  4. 4.
    Broekmans AW, Veitkamp JJ, Bertina RM. Congenital protein C deficiency and venous thromboembolism: a study in three Dutch families. N Engl J Med. 1983;309:340–344.PubMedCrossRefGoogle Scholar
  5. 5.
    Dahlbäck B, Carlsson M, Svensson J. Familial throm-bophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A. 1993;90:1004–1008.PubMedCrossRefGoogle Scholar
  6. 6.
    Wozniak G, Montag H, Alemany J. Incidence of disorders of hemostasis in patients with deep vein thrombosis. Int J Angiol. 1995;4:99–102.CrossRefGoogle Scholar
  7. 7.
    Conlan MG, Folsom AR, Finch A, Davis CE, Sorlie P, Wu KK. Correlation of plasma protein C levels with cardiovascular risk factors in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Thromb Haemost. 1993;70:762–767.PubMedGoogle Scholar
  8. 8.
    Pabinger I, Schneider B, and GTH Study Group on Natural Inhibitors. Thrombotic risk of women with hereditary antithrombin III-, protein C-, and protein S-def iciency taking oral contraceptive medication. Thromb Haemost. 1994;71:548–552.Google Scholar
  9. 9.
    Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984;74:2082–2088.PubMedCrossRefGoogle Scholar
  10. 10.
    Engesser L, Broekmans AW, Briet E, Brommer EJP, Bertina RM. Hereditary protein S deficiency: clinical manifestation. Ann Intern Med. 1987;106:677–682.PubMedGoogle Scholar
  11. 11.
    Nielsen HK. Pathophysiology of venous thromboembolism. Semin Thromb Hemost. 1991;17(suppl 3):250–253.PubMedGoogle Scholar
  12. 12.
    Hathaway WE, Goodnight SH. Disorders of Hemostasis and Thrombosis. New York, NY: McGraw-Hill; 1993.Google Scholar
  13. 13.
    Seifried E. Das Fibrinolysesystem und seine Aktivatoren. In: Hach-Wunderle V, Neuhaus K, eds. Thrombolyse und Antikoagulation in der Kardiologie. Berlin: Springer-Verlag; 1994:3–22.CrossRefGoogle Scholar
  14. 14.
    Krause J. Catabolism of tissue-type plasminogen activator (tPA): its variants, mutants, and hybrids. Fibrinolysis. 1988;2:133–142.Google Scholar
  15. 15.
    Martin U, von Möllendorf E, Akpan W, Kientsch-Engel R, Kaufmann B, Neugebauer G. Pharmacokinetic and hemostatic properties of the recombinant plasminogen activator BM06.022 in healthy volunteers. Thromb Haemost. 1991;66:569–574.PubMedGoogle Scholar
  16. 16.
    Müller-Berghaus G. Wechselwirkung zwischen Komplement, Kallikrein-Kinin-System und Hämostasesystem. In: Tilsner V, Matthias FR, eds. Immunologie und Blutgerinnung.Basel, Switzerland: Editiones Roche; 1990:27-46.Google Scholar
  17. 17.
    Bennett B, Booth NA, Ogston D. Potential interactions between complement, coagulation, fibrinolysis, kinin-forming, and other enzyme systems. In: Bloom AL, Thomas DP, eds. Haemostasis and Thrombosis. Edinburgh: Churchill Livingstone;1987:267-282.Google Scholar
  18. 18.
    Egberg N, Gallimore M, Green K, Jakobsen J, Vesterquist O, Wiman B. Effects of plasma kallikrein and bradykinin infusions into pigs on plasma fibrinolytic variables and urinary excretion of thromboxane and prostacyclin metabolites. Fibrinolysis. 1988;2:101–106.Google Scholar
  19. 19.
    Kaplan AP, Silverberg M. The coagulation-kinin pathway of human plasma. Blood. 1987;70:1–15.PubMedGoogle Scholar
  20. 20.
    Blajchman MA, Özge-Anwar AH. The role of the complement system in hemostasis. In: Brown E, ed. Progress in Hematology. Vol 14. New York, NY: Grune & Stratton; 1986:149–161.Google Scholar
  21. 21.
    Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimental atherosclerosis: terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercho-lesterolemic rabbits. Lab Invest. 1989;60:747–754.PubMedGoogle Scholar
  22. 22.
    Sundsmo JS, Fair DS. Relationship among the complement, kinin, coagulation, and f ibrinolytic systems. Seminar Immunopathology. 1983;6:231–258.Google Scholar
  23. 23.
    van Deventer SJH, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood. 1990;76:2520–2526.PubMedGoogle Scholar
  24. 24.
    Müller-Berghaus G. Physiologie der Blutgerinnung und Fibrinolyse. In: Müller-Eckhardt C, ed. Transfusionsmedizin.Berlin: Springer-Verlag; 1988:53-78.Google Scholar
  25. 25.
    Müller-Berghaus G. Pathophysiologic and biochemical events in disseminated intravascular coagulation: dysregulation of procoagulant and anticoagulant pathways. Semin Thromb Hemost. 1989;15:58–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Preissner KT. The role of vitronectin as multifunctional regulator in the hemostatic and immune systems. Blut. 1989;59:419–431.PubMedCrossRefGoogle Scholar
  27. 27.
    Petersen LC, Bjorn SE, Nordfang O. Effect of leucocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost. 1992;67:537–541.PubMedGoogle Scholar
  28. 28.
    Matthias FR. Blutgerinnungsstörungen. Berlin: Springer-Verlag; 1985.CrossRefGoogle Scholar
  29. 29.
    Greinacher A, Liebenhoff U, Kiefel V, Presek P, Müller-Eckardt C. Heparin-associated thrombocytopenia: the effects of various intravenous IgG preparations on antibody mediated platelet activation’a possible new indication for high dose i.v. IgG. Thromb Haemost. 1994;71:641–645.PubMedGoogle Scholar
  30. 30.
    Warken tin TE, Kelton JG. Heparin-induced thrombocytopenia. Progress in Hemostasis and Thrombosis. 1991;10:1–34.Google Scholar
  31. 31.
    Greinacher A, Michels I, Liebenhoff U, Presek P, Müller-Eckhardt C. Heparin-associated thrombocytopenia: immune complexes are attached to the platelet membrane by the negative charge of highly sulfated oligosaccharide. Br J Haematol. 1993;84:711–716.PubMedCrossRefGoogle Scholar
  32. 32.
    Greinacher A, Michels I, Müller-Eckhardt C. Heparin-associated thrombocytopenia: the antibody is not heparin specific. Thromb Haemost. 1992;67:545–549.PubMedGoogle Scholar
  33. 33.
    Cines DB, Tomaski A, Tannenbaum S. Immune endothe-lial-cell injury in heparin-associated thrombocytopenia. N Engl J Med. 1987;316:581–589.PubMedCrossRefGoogle Scholar
  34. 34.
    Greinacher A, Pötzsch B, Amiral J, Dummel V, Eichner A, Müller-Eckhardt C. Heparin-associated thrombocytopenia: isolation of the antibody and characterization of a multimolecular PF4-heparin complex as the major antigen. Thromb Haemost. 1994;71:247–251.PubMedGoogle Scholar
  35. 35.
    Triplett DA. Lupus-Antikoagulantien: Klinische Aspekte und Laborbefunde. Diagnose und Labor. 1993;43:154–161.Google Scholar
  36. 36.
    Lechner K, Jäger U, Kapiotis S, Pabinger I. Lupus-Antikoagulantien. In: Tilsner V, Matthias FR, eds. Immunologie und Blutgerinnung. Basel, Switzerland: Editiones Roche;1990:153-160.Google Scholar
  37. 37.
    Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990;335:1544–1547.PubMedCrossRefGoogle Scholar
  38. 38.
    Gastineau DA, Kazmier FJ, Nichols WL, Bowie EJW. Lupus anticoagulant: an analysis of the clinical and laboratory features of 219 cases. Am J Hematol. 1985;19:265–275.PubMedCrossRefGoogle Scholar
  39. 39.
    Love PE, Santoro SA. Antiphospholipid antibodies: anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders. Ann Intern Med. 1990;112:682–698.PubMedGoogle Scholar
  40. 40.
    de Boer K, Büller HR, ten Cate JW, Levi M. Deep vein thrombosis in obstetric patients: diagnosis and risk factors. Thromb Haemost. 1992;67:4–7.PubMedGoogle Scholar
  41. 41.
    Unander AM, Norberg R, Hahn L, Arfors L. Anticardiolipin antibodies and complement in ninety-nine women with habitual abortion. Am J Obstet Gynecol. 1987;156:114–119.PubMedGoogle Scholar
  42. 42.
    Matthias FR, Leithäuser B, Reitz D. Sepsis und Blutgerinnung: diagnostisches procedere. Diagnose und Labor. 1993;43:162–168.Google Scholar
  43. 43.
    Leithäuser B, Matthias FR, Voss R. Sepsis und Hämostase-system. In: Tilsner V, Matthias FR, eds. Blutgerinnung und Intensivmedizin. Basel, Switzerland: Editiones Roche; 1991:61–65.Google Scholar
  44. 44.
    Corrigan JJ, Ray WL, May N. Changes in the blood coagulation associated with septicemia. N Engl J Med. 1986;279:851–856.CrossRefGoogle Scholar
  45. 45.
    Voss R, Matthias FR, Borkowski G, Reitz D. Activation and inhibition of fibrinolysis in septic patients in an intensive care unit. Br J Haematol. 1990;75:99–105.PubMedCrossRefGoogle Scholar
  46. 46.
    van Wersch JWJ, Tjwa MKT. Coagulation/f ibrinolysis balance and lung cancer. Haemostasis. 1991;21:117–123.PubMedGoogle Scholar
  47. 47.
    Dvorak HF. Thrombosis and cancer. Hum Pathol. 1987;18:275–284.PubMedCrossRefGoogle Scholar
  48. 48.
    Chew E, Wallace AC. Demonstration of fibrin in early stages of experimental metastases. Cancer Res. 1976;36:1904–1909.PubMedGoogle Scholar
  49. 49.
    Evers JL, Patel J, MadejaJM, et al. Plasminogen activator activity and composition on human breast cancer. Cancer Res. 1983;42:219–226.Google Scholar
  50. 50.
    Duffy MJ, O’Grady P, Devaney D, O’Siorain L, Fennelly JJ, Lynen HJ. Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Cancer. 1988;62:531–533.PubMedCrossRefGoogle Scholar
  51. 51.
    Mussoni L, Acero R, Conforti MG, Riganti M, Mantovani A, Donatie MB. Enhanced expression of plasminogen activator (PA) activity by tumor-associated macrophages (TAM). Thromb Haemost. 1985;54:162–164.Google Scholar
  52. 52.
    Wojtukiewicz MZ, Zacharski LR, Memolo VA, et al. Abnormal regulation of coagulation/fibrinolysis in small cell carcinoma of the lung. Cancer. 1990;65:481–485.PubMedCrossRefGoogle Scholar
  53. 53.
    Hiller E, Riess H. Hämorrhagische Diathese und Thrombose. Stuttgart, Germany: Wissenschaftliche Verlags Gesellschaft;1988.Google Scholar
  54. 54.
    Haverback BJ, Dutcher TF, Shore PA, et al. Serotonin changes in platelets and brain induced by small daily doses of reserpine: lack of effect of depletion of platelet serotonin on hemostatic mechanisms. N Engl J Med. 1975;256:343–345.CrossRefGoogle Scholar
  55. 55.
    Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–415.PubMedCrossRefGoogle Scholar
  56. 56.
    Ratnoff OD, Saito H. Surface-mediated reactions. Current Topics Hematology. 1979;2:1–57.Google Scholar
  57. 57.
    Cochrane CG. Exposure of blood to foreign surfaces: what are the consequences? In: Dudziak R, Reuter HD, Kirchhoff PG, Schumann F, eds. Proteolyse und Proteinaseninhibition in der Herz-und Gefäβchirurgie. Stuttgart, Germany:Schattauer; 1985:5-16.Google Scholar
  58. 58.
    Neuhof H. Acute respiratory distress syndrome: the patho-genetic role of the “classical” cascade systems and the arachidonic acid metabolism. Intensive Care News. 1983;2:5–9.Google Scholar
  59. 59.
    Wachtfogel YT, Kucich U, James HL, et al. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest. 1983;72:1672–1677.PubMedCrossRefGoogle Scholar
  60. 60.
    Colman RW, Osbahr AJ. New vasoconstrictor, bovine pep-tide-B, released during blood coagulation. Nature. 1967;214:1040–1041.PubMedCrossRefGoogle Scholar
  61. 61.
    Neuhof H. Zur Rolle der Mediatoren bei der Sepsis. Intensivmedizin. 1989;26(suppl 1):3–9.Google Scholar
  62. 62.
    Saito H. Normal hemostatic mechanisms. In: Ratnoff OD, Forbes CD, eds. Disorders of Hemostasis. Philadelphia, Pa: WB Saunders; 1991:18–47.Google Scholar
  63. 63.
    Prescott SM, Zimmermann GA, McIntyre TM. Human endothelial cells in culture produce platelet activating factor ( 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc Natl Acad Sci U S A. 1984;81:3534–3538.PubMedCrossRefGoogle Scholar
  64. 64.
    Stern D, Nawroth P, Handley D, et al. An endothelial cell dependent pathway of coagulation. Proc Natl Acad Sci U S A. 1985;82:2523–2527.PubMedCrossRefGoogle Scholar
  65. 65.
    Esmon CT. The regulation of natural anticoagulant pathways. Science. 1987;235:1348–1352.PubMedCrossRefGoogle Scholar
  66. 66.
    Speiser W, Anders E, Preissner KT, et al. Differences in coagulant and f ibrinolytic activities of cultured human endothelial cells derived from omental tissue microvessels and umbilical veins. Blood. 1987;69:964–967.PubMedGoogle Scholar
  67. 67.
    Sixma JJ. Platelet adhesion in health and disease. In: Ver-straete M, Vermylen J, Lijnen HR, eds. Thrombosis and Haemostasis 1987. Leuven, Belgium: Leuven University Press; 1987:127–146.Google Scholar
  68. 68.
    Crawford N, Scrutton MC. Biochemistry of the blood platelets. In: Bloom AL, Thomas DP, eds. Haemostasis and Thrombosis. 2nd ed. Edinburgh: Churchill Livingstone; 1987:47–77.Google Scholar
  69. 69.
    Klein J. Immunologie. Weinheim, Germany: VCH Verlagsgesellschaft; 1991.Google Scholar
  70. 70.
    Dapper F, Neppl H, Wozniak G, Strube I, Neuhof H. EKZ: Humorale Systeme und Mediatoren. In: Preuße CJ, Schulte HD, eds. Extrakorporale Zirkulation Heute. Darmstadt, Germany: Steinkopff Verlag; 1991:31–36.CrossRefGoogle Scholar
  71. 71.
    Sakata Y, Aoki M. Crosslinking of alpha2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J Clin Invest. 1980;65:290–297.PubMedCrossRefGoogle Scholar
  72. 72.
    McDonagh J. Biochemistry of fibrin-stabilizing factor (XIII). In: McDonagh J, Seitz R, Egbring R, eds. Factor XIII. Stuttgart, Germany: Schattauer Verlag; 1993:2–8.Google Scholar
  73. 73.
    Pabinger I, Kyrle PA, Heistinger M, Eichinger S, Wittmann E, Lechner K. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency: a prospective cohort study. Thromb Haemost. 1994;71:441–445.PubMedGoogle Scholar
  74. 74.
    Scharrer I. Bekannte Ursachen der Thrombophilie. In: Tilsner V, Matthias FR, eds. Thrombophilie und Antikoagulation. Basel, Switzerland: Editiones Roche; 1993:7–21.Google Scholar
  75. 75.
    Gladson CL, Scharrer I, Hach V, Beck KH, Griffin JH. The frequency of type I heterozygous protein S and protein C deficiency in 141 unrelated young patients with venous thrombosis. Thromb Haemost. 1988;59:18–22.PubMedGoogle Scholar
  76. 76.
    Scharrer I, Hach-Wunderle V. Prävalenz und klinische Bedeutung der hereditären Thrombophilie. Innere Medizin. 1988;15:5.Google Scholar
  77. 77.
    Hach-Wunderle V, Scharrer I. Prävalenz des hereditären Mangels an Antithrombin III, Protein C, und Protein S. Dtsch Med Wochenschr. 1993;118:187–190.PubMedCrossRefGoogle Scholar
  78. 78.
    Jaenecke J. Antikoagulanzien-und Fibrinolysetherapie.Stuttgart, Germany: Georg Thieme Verlag; 1991.Google Scholar
  79. 79.
    Thiagarajan P, Shapiro SS, De Marco L. Monoclonal immunoglobin M lambda coagulation inhibitor with phospholipid specificity. J Clin Invest. 1980;66:397.PubMedCrossRefGoogle Scholar
  80. 80.
    Triplett DA, Brandt JT, Musgrave KA, Orr CA. The relationship between lupus anticoagulants and antibodies to phospholipid. JAMA. 1988;259:550–554.PubMedCrossRefGoogle Scholar
  81. 81.
    Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thrombosis Diethesis Haemorrhagia. 1965;13:516.Google Scholar
  82. 82.
    Wozniak G, Altmeyer W, Montag H, Alemany J. Thrombophilie: Gerinnungs-Screening in Diagnostik und Therapiekontrolle. Diagnose und Labor. 1992;2:120–124.Google Scholar
  83. 83.
    Bauer KA, Rosenberg RD. The hypercoagulable state. In: Ratnoff OD, Forbes CD, eds. Disorders of Hemostasis.Philadelphia, Pa: WB Saunders; 1991:267-291.Google Scholar
  84. 84.
    Branson HE, Katz J, Marble R, Griffin JH. Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant. Lancet. 1983;2:1165–1168.PubMedCrossRefGoogle Scholar
  85. 85.
    Broekmans AW, Bertina RM. Protein C. In: Poller L, ed. Recent Advances in Blood Coagulation. Vol 4. New York, NY: Churchill Livingstone; 1985:117–137.Google Scholar
  86. 86.
    Wintzen AR, Broekmans AW, Bertina RM, et al. Cerebral hemorrhagic infarction in young patients with hereditary protein C deficiency: evidence for “spontaneous” cerebral venous thrombosis. BMJ. 1985;290:350–352.PubMedCrossRefGoogle Scholar
  87. 87.
    Karpatkin M, Mannucci P, Bhogal M, et al. Low protein C in the neonatal period. Br J Haematol. 1986;62:137–142.PubMedCrossRefGoogle Scholar
  88. 88.
    Pui CH, Chesney CM, Bergum PW, et al. Lack of pathogenetic role of proteins C and S in thrombosis associated with asparaginase-prednisone-vincristine therapy for leukaemia. Br J Haematol. 1986;64:283–290.PubMedCrossRefGoogle Scholar
  89. 89.
    Uchida IL Influence of antibiotics on vitamin K metabolism. Ann Hematol. 1992;64(suppl):53.Google Scholar
  90. 90.
    Gonzalez R, Alberca I, Sala N, Vicente V. Protein C deficiency: response to danazol and DDAVP. Thromb Haemost. 1985;53:320–322.PubMedGoogle Scholar
  91. 91.
    Hach-Wunderle V, Scharrer I, Lottenberg R. Congenital deficiency of plasminogen and its relationship to venous thrombosis. Thromb Haemost. 1988;59:277–280.PubMedGoogle Scholar
  92. 92.
    Halbmayer WM, Mannhalter CH, Fischer M. Faktor XII-Mangel und Thrombophilie. Hämostaseologie. 1993;13:157–160.Google Scholar
  93. 93.
    Halbmayer WM, Haushofer A, Schön R, et al. The prevalence of moderate and severe F XII (Hageman factor) deficiency among the normal population: evaluation of the incidence of F XII deficiency among 300 healthy blood donors. Thromb Haemost. 1994;71:68–72.PubMedGoogle Scholar
  94. 94.
    Juhan-Vague I, Valadier J, Alessi M, et al. Deficient t-PA release and elevated PA inhibitor levels in patients with spontaneous or recurrent deep venous thrombosis. Thromb Haemost. 1987;57:67.PubMedGoogle Scholar
  95. 95.
    Saito H, Scott JG, Movat HZ, Scialla SJ. Molecular heterogeneity of Hageman trait (f XII deficiency): evidence that two of 49 subjects are cross-reacting material positive (CRM+). J Lab Clin Med. 1979;94:256–265.PubMedGoogle Scholar
  96. 96.
    Wuillemin WA, Huber I, Furlan M, Lämmle B. Functional characterization of an abnormal factor XII molecule (F XII Bern). Blood. 1991;78:997–1004.PubMedGoogle Scholar
  97. 97.
    Goodnough LT, Saito H, Ratnoff OD. Thrombosis or myocardial infarction in congenital clotting factors abnormalities and chronic thrombocytopenias: a report of 21 patients and a review of 50 previously reported cases. Medicine. 1983;62:248–255.PubMedCrossRefGoogle Scholar
  98. 98.
    Halbmayer W-M, Mannhalter C, Feichtinger C, Rubi K, Fischer M. The prevalence of factor XII deficiency in 103 orally anticoagulated outpatients suffering from recurrent venous and/or arterial thromboembolism. Thromb Haemost. 1992;68:285–290.PubMedGoogle Scholar
  99. 99.
    Christie DJ, Mullen PC, Aster RH. Fab-mediated binding of drug-dependent antibodies to platelets in quinidine and quinidine-induced thrombocytopenia. J Clin Invest. 1985;75:310–314.PubMedCrossRefGoogle Scholar
  100. 100.
    Amiral J, Bridey F, Reyfus M, et al. Platelet factor 4 com-plexed to heparin is the target for antibodies generated in heparin-induced thrombocytopenia. Thromb Haemost. 1992;68:95–96.PubMedGoogle Scholar
  101. 101.
    Kelton JG, Sheridan D, Santos A, et al. Heparin-induced thrombocytopenia: laboratory studies. Blood. 1988;72:925–930.PubMedGoogle Scholar
  102. 102.
    Chong BH, Fawaz I, Chesterman CN, Berndt MC. Heparin-induced thrombocytopenia: mechanism of interaction of the heparin-dependent antibody with platelets. Br J Haematol. 1989;73:235–240.PubMedCrossRefGoogle Scholar
  103. 103.
    Anderson GP. Insights into heparin-induced thrombocytopenia. Br J Haematol. 1992;80:504–508.PubMedCrossRefGoogle Scholar
  104. 104.
    Morgagni JB. The Seats and Causes of Diseases Investigated by Anatomy. 3rd ed. London; 1796.Google Scholar
  105. 105.
    Dastre A. Fibrinolyse dans le sang. Archiv Physiology Normale Pathology. 1893;5:661–663.Google Scholar
  106. 106.
    Astrup T. The hemostatic balance. Thrombosis et Diathesis Haemorrhagia. 1958;2:347–357.Google Scholar
  107. 107.
    Fearnley GR. A concept of natural fibrinolysis. Lancet.1961;992-993.Google Scholar
  108. 108.
    Tillett WS, Garner RL. The fibrinolytic activity of he-molytic streptococci. J Exp Med. 1933;58:485–491.PubMedCrossRefGoogle Scholar
  109. 109.
    Christensen LR, MacLeod CM. A proteolytic enzyme of serum: characterization, activation, and reaction with inhibitors. J Gen Physiol. 1945;28:559–565.PubMedCrossRefGoogle Scholar
  110. 110.
    Kirby EP, Martin N, Marder VJ. Degradation of bovine factor VIII by plasmin and trypsin. Blood. 1974;43:629–640.PubMedGoogle Scholar
  111. 111.
    Pasquini R, Hershgold EJ. Effects of plasmin on human factor VIII (AHF). Blood. 1973;41:105–111.PubMedGoogle Scholar
  112. 112.
    Sherry S. Fibrinolysis, Thrombosis, and Hemostasis. Philadelphia, Pa: Lea & Febiger; 1992.Google Scholar
  113. 113.
    Wozniak G, Montag H, Alemany J. Correlation between results of regional thrombolysis with rtPA in patients with deep vein thrombosis and the coagulation status before therapy: predictive value of the F1+2/D-dimer-index. In: Proceedings of the European Congress of the International Union of Phlebology, Budapest 1993. Essex, England: Multi-Science Publishing; 1993:424-434.Google Scholar
  114. 114.
    Paques EP, Heimburger N. Das fibrinolytische System. Hämostaseologie. 1986;6:139–147.Google Scholar
  115. 115.
    Smith RAG, Dupe RJ, English PD, Green J. Fibrinolysis with acyl enzymes: a new approach to thrombolytic therapy. Nature. 1981;290:505–508.PubMedCrossRefGoogle Scholar
  116. 116.
    Van de Werf F, Nobuhara N, Collen D. Coronary thrombolysis with human single-chain, urokinase-type plasminogen activator (pro-urokinase) in patients with acute myocardial infarction. Ann Intern Med. 1986;104:345–348.PubMedGoogle Scholar
  117. 117.
    Alemany J, Montag H, Wozniak G. Rezidivthrombosen nach chirurgischer Thrombektomie ilio-femoraler Thrombosen. Archiv Angiologie. 1993;24:147–150.Google Scholar
  118. 118.
    Martin M, Fiebach BJO. Fibrinolytische Behandlung peripherer Arterien-und Venenverschlüsse. Bern, Switzerland: Verlag Hans Huber; 1994.Google Scholar
  119. 119.
    Straub H. Fibrinolytische Therapie. Stuttgart, Germany: Schattauer Verlag; 1983.Google Scholar
  120. 120.
    ISAM Study Group. A prospective trail of intravenous streptokinase in acute myocardial infarction: mortality, morbidity, and infarct size at 21 days. N Engl J Med. 1986;314:1465–1471.CrossRefGoogle Scholar
  121. 121.
    Carter CJ, Doyle DL, Dawson N, Fowler S, Devine DV. Investigations into the clinical utility of latex D-dimer in the diagnosis of deep vein thrombosis. Thromb Haemost. 1993;69:8–11.PubMedGoogle Scholar
  122. 122.
    Bauer KA, Rosenberg RD. The pathophysiology of the prethrombotic state in humans: insights gained from studies using markers of hemostatic system activation. Blood. 1987;70:343–345.PubMedGoogle Scholar
  123. 123.
    Wozniak G, Dapper F, Alemany J. Prädiktive Bedeutung des aktuellen Gerinnungsstatus fur die semi-lokale rtPA-Lyse der Unterschenkelvenenthrombose. Schweiz Med Wochenschr. 1995;125(suppl 66):11.Google Scholar
  124. 124.
    Pannekoek H, de Vries C, van Zonneveld AJ. Mutants of human tissue-type plasminogen activator (tPA): structural aspects and functional properties. Fibrinolysis. 1988;2:123–132.Google Scholar
  125. 125.
    Jackson CV, Crowe VG, Craft TJ, et al. Thrombolytic activity of a new plasminogen activator, LY210825, compared to recombinant tissue-type plasminogen activator in a canine model of coronary artery thrombosis. Circulation. 1990;82:930–940.PubMedCrossRefGoogle Scholar
  126. 126.
    Phaneuf MD, Ozaki CK, Johnstone MT, Loza J-P, Quist WC, LoGerfo FW. Covalent linkage of streptokinase to re-combinant hirudin: a novel thrombolytic agent with anti-thrombotic properties. Thromb Haemost. 1994;71:481–487.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gernold Wozniak

There are no affiliations available

Personalised recommendations