The Central Auditory System of Reptiles and Birds

  • Catherine E. Carr
  • Rebecca A. Code
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 13)


The central auditory systems of both birds and reptiles (jointly known as sauropsids) are organized along a common plan. The similarities among the sauropsids are presumably due to the conserved nature of the auditory sense and to the close phylogenetic relationships within the group. The common organization of the auditory system has allowed us to organize this chapter by auditory nucleus from hindbrain to forebrain. The embryology, anatomy, and physiology of the auditory nuclei of the turtles, snakes and lizards, crocodiles, and birds will be described, with attention paid to both conserved and derived features. A more extensive list of the older literature may be found in Carr (1992).


Hair Cell Cochlear Nucleus Interaural Time Difference Auditory Nerve Fiber Interaural Level Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47:225–245.PubMedCrossRefGoogle Scholar
  2. Adams JC, Mroz EA, Sewell WF (1987) A possible neurotransmitter role for CGRP in a hair-cell sensory organ. Brain Res 419:347–351.PubMedCrossRefGoogle Scholar
  3. Adolphs R (1993) Acetylcholinesterase staining differentiates functionally distinct auditory pathways in the barn owl. J Comp Neurol 329:365–377.PubMedCrossRefGoogle Scholar
  4. Altschuler RA, Fex J (1986) Efferent neurotransmitters. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 383–396.Google Scholar
  5. Arends JJA (1981) Sensory and motor aspects of the trigeminal system in the mallard (Anas platyrhonchos L.) State Univ Leiden Netherlands.Google Scholar
  6. Arends JJA, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381.PubMedCrossRefGoogle Scholar
  7. Balaban CD, Ulinski PS (1981) Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J Comp Neurol 200:95–129.PubMedCrossRefGoogle Scholar
  8. Barbas-Henry HA, Lohman AHM (1988) Primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus. J Comp Neurol 277:234–249.PubMedCrossRefGoogle Scholar
  9. Belekhova MG, Zharskaja VD, Khachunys AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirnforsch 26:127–152.PubMedGoogle Scholar
  10. Biederman-Thorson M (1970) Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. Brain Res 24:247–256.PubMedCrossRefGoogle Scholar
  11. Bigalke-Kunz B, Rubsamen R, Dorrscheidt GJ (1987) Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. J Comp Physiol 161:255–265.CrossRefGoogle Scholar
  12. Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121.PubMedCrossRefGoogle Scholar
  13. Boord RL (1961) The efferent cochlear bundle in the caiman and pigeon. Exp Neurol 3:225–239.CrossRefGoogle Scholar
  14. Boord RL (1968) Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J Comp Neurol 133:523–542.PubMedCrossRefGoogle Scholar
  15. Boord RL, Rasmussen GL (1963) Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J Comp Neurol 120:462–475.CrossRefGoogle Scholar
  16. Bottjer SW, Arnold AP (1982) Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): localization with horseradish peroxidase. J Comp Neurol 210:190–197.PubMedCrossRefGoogle Scholar
  17. Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintainance of song in passerine birds. Science 224:901–903.PubMedCrossRefGoogle Scholar
  18. Brauth SE (1990) Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry. Brain Res 508:142–146.PubMedCrossRefGoogle Scholar
  19. Brauth SE, McHale CM, Brasher CA, Dooling RJ (1987) Auditory pathways in the budgerigar. Brain Behav Evol 30:174–199.PubMedCrossRefGoogle Scholar
  20. Brown JL (1971) An exploratory study of vocalization areas in the brain of the red-winged blackbird (Agelaius phoeniceus). Behavior 24:91–127.CrossRefGoogle Scholar
  21. Browner RH, Kennedy MC, Facelle T (1981) The cytoarchitecture of the torus semicircularis in the red-eared turtle. J Morphol 169:207–223.CrossRefGoogle Scholar
  22. Browner RH, Marbey D (1988) Nucleus magnocellularis in the red-eared turtle, Chrysemys scripta elegans: eighth nerve endings and neuronal types. Hearing Res 33:257–272.CrossRefGoogle Scholar
  23. Bruce LL, Butler AB (1984) Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J Comp Neurol 229:602–615.PubMedCrossRefGoogle Scholar
  24. Carr CE (1992) Evolution of the central auditory system in reptiles and birds. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing New York: Springer-Verlag, pp. 511–543.Google Scholar
  25. Carr CE, Boudreau RE (1991) The central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314:306–318.PubMedCrossRefGoogle Scholar
  26. Carr CE, Boudreau RE (1993) Organization of nucleus magnocellularis and nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355.PubMedCrossRefGoogle Scholar
  27. Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246.PubMedGoogle Scholar
  28. Carr CE, Fujita I, Konishi M (1989) Distribution of GABAergic neurons and ter-minals in the auditory system of the barn owl. J Comp Neurol 286:190–207.PubMedCrossRefGoogle Scholar
  29. Carr CE, Amagai S, Kubke MF, Massoglia DP (1996) Evolution of time coding systems. In: Elsner N, Schnitzler U (eds) The Proceeding of the Goettingen Neurobiology Conference. Thieme, Stuttgart, Germany.Google Scholar
  30. Chandler J (1984) Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhyncos. I. The hatchling. J Comp Neurol 222:506–522.PubMedCrossRefGoogle Scholar
  31. Code RA (1995) Efferent neurons to the macula lagena in the embryonic chick. Hear Res 82:26–30.PubMedCrossRefGoogle Scholar
  32. Code RA (1996) Chick auditory terminals contain dynorphin-like immunoreactivity. Neuroreport 7:2917–2920.PubMedCrossRefGoogle Scholar
  33. Code RA (1997) The avian cochlear efferent system. Poultry Avian Biol Rev 8:1–8.Google Scholar
  34. Code RA, Carr CE (1994) Choline acetyltransferase-immunoreactive cochlear efferent neurons in the chick auditory brainstem. J Comp Neurol 340:161–173.PubMedCrossRefGoogle Scholar
  35. Code RA, Carr CE (1995) Enkephalin-like immunoreactivity in the chick brain-stem: possible relation to the cochlear efferent system. Hear Res 87:69–83.PubMedCrossRefGoogle Scholar
  36. Code RA, Burd GD, Rubel EW (1989) Development of GABA immunoreactivity in brainstem auditory nuclei of the chick: ontogeny of gradients in terminal staining. J Comp Neurol 284:504–518.PubMedCrossRefGoogle Scholar
  37. Code RA, Darr MS, Carr CE (1996) Chick cochlear efferent neurons are not immunoreactive for calcitonin gene-related peptide. Hear Res 97:127–135.PubMedGoogle Scholar
  38. Cohen YE, Knudsen EI (1994) Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl basal ganglia. J Neurophysiol 72:285–298.PubMedGoogle Scholar
  39. Cohen YE, Knudsen EI (1995) Auditory tuning for spatial cues in the barn owl: local organization but no space map. J Neurosci 15:5152–5168.PubMedGoogle Scholar
  40. Cole KS, Gummer AW (1990) A double-label study of efferent projections to the cochlea of the chicken, Gallus domesticus. Exp Brain Res 82:585–588.PubMedCrossRefGoogle Scholar
  41. Coles RB, Aitkin LM (1979) The response properties of auditory neurones in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol 134:241–251.CrossRefGoogle Scholar
  42. Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol 163:117–133.CrossRefGoogle Scholar
  43. Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367:96–113.PubMedCrossRefGoogle Scholar
  44. Cotanche DA, Lee KH, Stone JS, Picard DA (1994) Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol (Berl) 189:1–18.CrossRefGoogle Scholar
  45. Cotanche DA, Hennig AK, Riedl AE, Messana EP (1997) Hair cell regeneration in the chick cochlea—where we stand after 10 years of work. In: Palmer AR, Rees A, Summerfield AQ, Meddis A (eds) Psychophysical and Physiological Advances in Hearing: Proceedings of the 11th International Symposium on Hearing. London: Whurr, pp. 109–115.Google Scholar
  46. Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. J Physiol 306:79–125.PubMedGoogle Scholar
  47. Desmedt JE, Delwaide PJ (1963) Neural inhibition in a bird: effect of strychnine and picrotoxin. Nature 200:583–585.PubMedCrossRefGoogle Scholar
  48. Derso A, Schwarz DWF, Schwarz IE (1993) A survey of the auditory midbrain, thalamus and forebrain in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry. J Otolaryngol 22:391–396.Google Scholar
  49. Diekamp B, Margoliash D (1991) Auditory responses in the nucleus ovoidalis are not so simple. Soc Neurosci Abstr 17:446.Google Scholar
  50. Dooling RJ, Brown SD, Park TJ, Okanoya K (1990) Natural perceptual categories for vocal signals in budgerigars (Melopsittacus undulatus). In: Stebbins WC, Berkley MA (eds) Comparative Perception. Vol. II: Complex Signals. New York: John Wiley & Sons, pp. 345–374.Google Scholar
  51. Doupe AJ (1997) Song-and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. J Neurosci 17:1147–1167.PubMedGoogle Scholar
  52. Duckert LG, Rubel EW (1990) Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hear Res 48:161–182.PubMedCrossRefGoogle Scholar
  53. Duckert LG, Rubel EW (1993) Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. J Comp Neurol 331:7596.CrossRefGoogle Scholar
  54. Du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146.PubMedGoogle Scholar
  55. Durand S, Tepper J, Cheng MF (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323:495–518.PubMedCrossRefGoogle Scholar
  56. Durand SE, Zuo MX, Zhou SL, Cheng MF (1993) Avian auditory pathways show metenkephalin-like immunoreactivity Neuroreport 4:727–730.Google Scholar
  57. Durand SE, Heaton JT, Amateau SK, Brauth SE (1997) Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus). J Comp Neurol 877:179–206.CrossRefGoogle Scholar
  58. Ebbesson SO (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212.PubMedGoogle Scholar
  59. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.PubMedGoogle Scholar
  60. Farabaugh SM, Wild JM (1997) Reciprocal connections between primary and secondary auditory pathways in the telencephalon of the budgerigar (Melopsittacus undulatus). Brain Res 747:18–25.PubMedCrossRefGoogle Scholar
  61. Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  62. Firbas W, Muller G (1983) The efferent innervation of the avian cochlea. Hear Res 10:109–116.PubMedCrossRefGoogle Scholar
  63. Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.PubMedCrossRefGoogle Scholar
  64. Fischer FP (1994) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.PubMedCrossRefGoogle Scholar
  65. Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: a quantitative morphological SEM analysis. Hear Res 34:87–101.PubMedCrossRefGoogle Scholar
  66. Fischer FP, Eisensamer B, Manley GA (1994) Cochlear and lagenar ganglia of the chicken. J Morphol 220:71–83.PubMedCrossRefGoogle Scholar
  67. Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404.PubMedCrossRefGoogle Scholar
  68. Foster RJ, Hall WJ (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178:783–832.PubMedCrossRefGoogle Scholar
  69. Fritzsch B (1981) Efferent neurons to the labyrinth of Salamandra salamandra as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 26: 191–196.PubMedCrossRefGoogle Scholar
  70. Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.). Hear Res 32:81–92.PubMedCrossRefGoogle Scholar
  71. Gurney M (1981) Hormonal control of cell form and number in the zebra finch song system. J Neurosci 1:658–673.PubMedGoogle Scholar
  72. Hall WC, Ebner FF (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140:101–127.PubMedCrossRefGoogle Scholar
  73. Hall WS, Cohen PL, Brauth SE (1993) Auditory projections to the anterior telencephalon in the budgerigar (Melopsittacus undulatus). Brain Behav Evol 41: 97–116.PubMedCrossRefGoogle Scholar
  74. Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the mid-brains of snakes. Science 163:1221–1223.PubMedCrossRefGoogle Scholar
  75. Hashimoto S, Kimura RS, Takasaka T (1990) Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea. Acta Otolaryngol (Stockh) 109:228–234.CrossRefGoogle Scholar
  76. Hausler U (1983) Histologische and elektrophysiologische Untersuchungen an einzelnen Neuronen des Nucleus ovoidalis im Zwischenhirn des Staren (Sturnus vulgaris L.) Diplomthesis, Faculty of Biology, Ruhr Universitaet Bochum, Germany.Google Scholar
  77. Hausler U (1984) Neurophysiological and anatomical studies of nucleus ovoidalis neurons in the starling, Sturnus vulgaris. Verh Dtsch Zool Ges 77:291.Google Scholar
  78. Hausler U (1988) Topography of the thalamotelencephalic projections in the auditory system of a songbird. In: Syka J, Masterton RB (eds) Auditory Pathway: Structure and Function. New York: Plenum Press, pp. 197–202.CrossRefGoogle Scholar
  79. Hausler U (1989) Die strukturelle and funktionelle Organisation der Hoerbahn im caudalen Vorderhirn des Staren (Sturnus vulgaris, L.) Ph.D. Thesis, Faculty of Biology, Technische Universitaet Muenchen, Germany.Google Scholar
  80. Hausler UHL, Sullivan WE, Soares D, Carr CE (1999) A morphological study of the cochlear nuclei of the pigeon (Columba Livia). Brain Behav Evol 54:290–302.PubMedCrossRefGoogle Scholar
  81. Heil P, Scheich H (1986) Effects of unilateral and bilateral cochlear removal on 2-deoxyglucose patterns in the chick auditory system. J Comp Neurol 252:279–301.PubMedCrossRefGoogle Scholar
  82. Hennig AK, Cotanche DA (1998) Regeneration of cochlear efferent nerve termi-nals after gentamycin damage. J Neurosci 18:3282–3296.PubMedGoogle Scholar
  83. Hill KG, Stange G, Mo J (1989) Temporal synchronization in the primary auditory response in the pigeon. Hear Res 39:63–74.PubMedCrossRefGoogle Scholar
  84. Hotta T (1971) Unit responses from the nucleus angularis in the pigeon’s medulla. Comp Biochem Physiol 40A:415–424.CrossRefGoogle Scholar
  85. Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.PubMedCrossRefGoogle Scholar
  86. Jhaveri S, Morest DK (1982) Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: a light and electron microscope study. Neuroscience 7:809–836.PubMedCrossRefGoogle Scholar
  87. Johnson DH (1980) The relationship between spike rate and synchrony in re-sponses of auditory nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.PubMedCrossRefGoogle Scholar
  88. Joseph AW, Hyson RL (1993) Coincidence detection by binaural neurons in the chick brain stem. J Neurophysiol 69:1197–1211.PubMedGoogle Scholar
  89. Kaiser A, Manley GA (1994) Physiology of single putative cochlear efferents in the chicken. J Neurophysiol 72:2966–2979.PubMedGoogle Scholar
  90. Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia) 1. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res 6:409–427.PubMedCrossRefGoogle Scholar
  91. Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia) I1. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11: 134–153.PubMedCrossRefGoogle Scholar
  92. Karten HJ (1991) Homology and evolutionary origins of the ¡®neocortex.¡¯ Brain Behav Evol 38:264–272.PubMedCrossRefGoogle Scholar
  93. Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Baltimore: Johns Hopkins University Press.Google Scholar
  94. Karten HJ, Shimizu T (1989) The origins of neocortex: connections and lamination as distinct events in evolution. J Cogn Neurosci 1:291–301.CrossRefGoogle Scholar
  95. Katz LC, Gurney ME (1981) Auditory responses in the zebra finch’s motor system for song. Brain Res 211:192–197.CrossRefGoogle Scholar
  96. Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus field L—in the canary. J Comp Neurol 183:455–470.PubMedCrossRefGoogle Scholar
  97. Kennedy MC (1974) Auditory multiple-unit activity in the midbrain of the Tokay gecko (Gekko gekko, L.). Brain Behav Evol 10:257–264.PubMedCrossRefGoogle Scholar
  98. Kennedy MC (1975) Vocalization elicited in a lizard by electrical stimulation of the midbrain. Brain Res 91:321–325.PubMedCrossRefGoogle Scholar
  99. Kennedy MC, Browner RH (1981) The torus semicircularis in a gekkonid lizard. J Morphol 169:259–274.CrossRefGoogle Scholar
  100. Keppler C, Schermuly L, Klinke R (1994) The course and morphology of efferent nerve fibers in the papilla basilaris of the pigeon (Columba livia). Hear Res 74:259–264.PubMedCrossRefGoogle Scholar
  101. Kirsch M, Coles RB, Leppelsack H-J (1980) Unit recordings from a new auditory area in the frontal neostriatum of the awake starling (Sturnus vulgaris). Exp Brain Res 38:375–380.PubMedCrossRefGoogle Scholar
  102. Knudsen EI, Konishi M (1978) A Neural map of auditory space in the owl. Science 200:795–797.PubMedCrossRefGoogle Scholar
  103. Knudsen EI (1980) Sound localization in birds. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. Berlin: Springer Verlag, pp. 287–322.Google Scholar
  104. Knudsen EI (1983) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J Comp Neurol 218:174–186.CrossRefGoogle Scholar
  105. Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218:187–196.PubMedCrossRefGoogle Scholar
  106. Knudsen EI, Konishi M, Pettigrew JD (1977) Receptive fields of auditory neurons in the owl. Science 198:1278–1280.PubMedCrossRefGoogle Scholar
  107. Knudsen EI, Knudsen PF, Masino T (1993) Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl. J Neurosci 13:2837–2852.PubMedGoogle Scholar
  108. Konishi M (1970) Comparative neurophysiological studies of hearing and vocalization in songbirds. J Comp Physiol 66:257–272.Google Scholar
  109. Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424.Google Scholar
  110. Konishi M (1985) Birdsong: from behavior to neuron. Ann Rev Neurosci 8:125–170.PubMedCrossRefGoogle Scholar
  111. Konishi M (1986) Centrally synthesized maps of sensory space. Trends Neurosci 9:163–168.CrossRefGoogle Scholar
  112. Konishi M (1994) Pattern generation in birdsong. Current Opinion Neurobiol 4:827–831.CrossRefGoogle Scholar
  113. Konishi M, Sullivan WE, Takahashi T (1985) The owl’s cochlear nuclei process different sound localization cues. J Acoust Soc Am 78:360–364.PubMedCrossRefGoogle Scholar
  114. Köppl C (1994) Auditory nerve terminals in the cochlear nucleus magnocellularis: differences between low and high frequencies. J Comp Neurol 339:438–446.PubMedCrossRefGoogle Scholar
  115. Köppl C (1997) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77:364–377.PubMedGoogle Scholar
  116. Köppl C, Manley GA (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa II. Tonotopic organization and innervation pattern of the basilar papilla. J Comp Physiol A 167:101–112.CrossRefGoogle Scholar
  117. Köppl C, Manley GA (1990b) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa III. Patterns of spontaneous and tone-evoked nerve-fibre activity. J Comp Physiol A 167:113–127.CrossRefGoogle Scholar
  118. Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer Verlag, pp. 489–510.CrossRefGoogle Scholar
  119. Köppl C, Carr CE (1997) A low-frequency pathway in the barn owl’s auditory brain-stem. J Comp Neurol 378:265–282.PubMedCrossRefGoogle Scholar
  120. Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704.CrossRefGoogle Scholar
  121. Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol 129:1–4.CrossRefGoogle Scholar
  122. Kubke MF, Wild M, Carr CE (1998) Nucleus basalis of the barn owl contains both tonotopic and somatotopic maps. Int Soc Neuroethol Abstr.Google Scholar
  123. Kunzle H (1986) Projections from the cochlear nuclear complex to rhombencephalic auditory centers and torus semicircularis in the turtle. Brain Res 379:307–319.PubMedCrossRefGoogle Scholar
  124. Lachica EA, Rubsamen R, Rubel EW (1994) GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. J Comp Neurol 348:403–418.PubMedCrossRefGoogle Scholar
  125. Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10:170–196.PubMedCrossRefGoogle Scholar
  126. Leibler LM (1975) Monaural and binaural pathways in the ascending auditory system of the pigeon. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  127. Leppelsack HJ (1979) The increase of response selectivity within the avian auditory pathway. Exp Brain Res (suppl II):116–121.CrossRefGoogle Scholar
  128. Leppelsack H-J, Schwartzkopff J (1972) Eigenschaften von Aukutishen Neuronen im Kaudalen Neostriatum von Vogeln. J Comp Physiol 80:137–140.CrossRefGoogle Scholar
  129. Levin MD, Schneider M, Kubke M, Wenthold R, Carr CE (1997) Localization of glutamate receptors in the auditory brainstem of the barn owl. J Comp Neurol 378:239–253.PubMedCrossRefGoogle Scholar
  130. McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Comparative Hearing: Fish and amphibians Fay RR, Popper AN (eds). New York: Springer-Verlag.Google Scholar
  131. Maekawa M (1987) Auditory responses in the nucleus basalis of the pigeon. Hear Res 27:231–237.PubMedCrossRefGoogle Scholar
  132. Manley JA (1970a) Frequency sensitivity of auditory neurons in the Caiman cochlear nucleus. Z Vgl Physiol 66:251–256.CrossRefGoogle Scholar
  133. Manley GA (1970b) Comparative studies of auditory physiology in reptiles. Z Vgl Physiol 67:363–381.CrossRefGoogle Scholar
  134. Manley JA (1971) Single unit studies in the midbrain auditory area of Caiman. Z Vgl Physiol 71:255–261.CrossRefGoogle Scholar
  135. Manley GA (1974) Activity patterns of neurons in the peripheral auditory system of some reptiles. Brain Behav Evol 10:244–256.PubMedCrossRefGoogle Scholar
  136. Manley GA (1977) Response patterns and peripheral origin of auditory nerve fibres in the monitor lizard, Varanus bengalensis. J Comp Physiol 118:249–260.CrossRefGoogle Scholar
  137. Manley GA (1981) A review of the auditory physiology of reptiles. In: Autrum HE, Perl E, Schmidt RF (eds) Progress in Sensory Physiology. Berlin: Springer Verlag, pp. 49–134.CrossRefGoogle Scholar
  138. Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity difference in the brainstem of the barn owl. J Neurosci 8:2665–2677.PubMedGoogle Scholar
  139. Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol A 164:289–296.CrossRefGoogle Scholar
  140. Manley GA, Yates GK, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa IV. Phase locking of auditory-nerve fibres. J Comp Physiol A 167:129–138.CrossRefGoogle Scholar
  141. Marcellini DL (1978) The acoustic behavior of lizards. In: Greenberg N, MacLean PD (eds) Behavior and Neurology of Lizards. Rockville, MD: US Dept of Health, Education and Welfare, pp. 287–300.Google Scholar
  142. Margoliash D (1983) Acoustic parameters underlying the responses of song specific in the white-crowned sparrow. J Neurosci 3:1039–1057.PubMedGoogle Scholar
  143. Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738.PubMedCrossRefGoogle Scholar
  144. Masino T, Knudsen El (1990) Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345: 434–437.PubMedCrossRefGoogle Scholar
  145. Mazer JA (1995) Integration of Parallel Processing Streams in the Inferior Collicu-lus of the Barn Owl. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.Google Scholar
  146. Mazer JA (1998) How the owl resolves auditory coding ambiguity. Proc Natl Acad Sci U S A 95:10932–10937.PubMedCrossRefGoogle Scholar
  147. Miller MR (1975) The cochlear nuclei of lizards. J Comp Neurol 159:375–406.PubMedCrossRefGoogle Scholar
  148. Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. Berlin: Springer Verlag, pp. 169–204.CrossRefGoogle Scholar
  149. Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.PubMedCrossRefGoogle Scholar
  150. Miller MR, Kasahara M (1979) The cochlear nuclei of some turtles. J Comp Neurol 185:221–236.PubMedCrossRefGoogle Scholar
  151. Mogdans J, Knudsen EI (1994a) Site of auditory plasticity in the brain stem (VLVp) of the owl revealed by early monaural occlusion. J Neurophysiol 72:2875–2891.Google Scholar
  152. Mogdans J, Knudsen EI (1994b) Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hear Res 74:148–164.CrossRefGoogle Scholar
  153. Moiseff A (1989a) Bicoordinate sound localization by the barn owl. J Comp Physiol 164:637–644.CrossRefGoogle Scholar
  154. Moiseff A (1989b) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol 164:629–636.CrossRefGoogle Scholar
  155. Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J Neurosci 2:2553–2562.Google Scholar
  156. Muller CM (1987) Gamma-aminobutyric acid immunoreactivity in brainstem auditory nuclei of the chicken. Neurosci Lett 77:272–276.PubMedCrossRefGoogle Scholar
  157. Nadol JB (1990) Synaptic morphology of inner and outer hair cells of the human organ of Corti. J Electron Microsc Tech 15:187–196.PubMedCrossRefGoogle Scholar
  158. Norberg RA (1978) Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funerus (Linne). Philos Trans R Soc Lond B Biol Sci 282:325–410.CrossRefGoogle Scholar
  159. Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318.PubMedCrossRefGoogle Scholar
  160. Nottebohm F (1980) Brain pathways for vocal learning in birds: a review of the first 10 years. Prog Pyschobiol Physiol Psychol 9:85–124.Google Scholar
  161. Ofsie MS, Hennig AK, Messana EP, Cotanche DA (1997) Sound damage and gentamicin treatment produce different patterns of damage to the efferent innervation of the chick cochlea. Hear Res 113:207–223.PubMedCrossRefGoogle Scholar
  162. Oertel D (1997) Encoding of timing in the brain stem auditory nuclei of vertebrates. Neuron 19:959–962.PubMedCrossRefGoogle Scholar
  163. Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and inten-sity differences in the optic tectum of the barn owl. J Neurosci 9:2591–2605.PubMedGoogle Scholar
  164. Overholt EM, Rubel EW, Hyson RL (1992) A circuit for coding interaural time dif-ferences in the chick brainstem. J Neurosci 12:1696–1706.Google Scholar
  165. Parent A (1976) Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase. Brain Res 108:25–36.PubMedCrossRefGoogle Scholar
  166. Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nucleus of the chicken: organization of projections from N. magnocellularis to N. laminaris. J Comp Neurol 164:435–448.Google Scholar
  167. Parks TN, Code RA, Taylor DA, Solum DA, Strauss KI, Jacobowitz DM, Winsky L (1997) Calretinin expression in the chick brainstem auditory nuclei develops and is maintained independently of cochlear nerve input. J Comp Neurol 383:112–121.PubMedCrossRefGoogle Scholar
  168. Peña JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16:7046–7054.PubMedGoogle Scholar
  169. Paton JA, Manogue KR, Nottebohm F (1981) Bilateral organization of the vocal control pathway in the budgerigar, M. undulatus. J Neurosci 1:1279–1288.PubMedGoogle Scholar
  170. Potash LM (1970) Neuroanatomical regions relevant to production and analysis of vocalization within the avian torus semicircularis. Experientia 26:257–264.CrossRefGoogle Scholar
  171. Pritz MB (1974a) Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:199–214.CrossRefGoogle Scholar
  172. Pritz MB (1974b) Ascending connections of a midbrain auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:179–198.CrossRefGoogle Scholar
  173. Pritz MB, Stritzel ME (1992) A second auditory area in the non-cortical telencephalon of a reptile. Brain Res 569:146–151.PubMedCrossRefGoogle Scholar
  174. Proctor L (1997) The auditory thalamus of the barn owl: anatomy and physiological responses to sound localization cues. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.Google Scholar
  175. Proctor L, Konishi M (1997) Representation of sound localization cues in the auditory thalamus of the barn owl. Proc Natl Acad Sci U S A 94:10421–10425.PubMedCrossRefGoogle Scholar
  176. Puelles L, Robles C, Martinez-de-la-Torre M, Martinez S (1994) New subdivision schema for the avian torus semicircularis: neurochemical maps in the chick. J Comp Neurol 340:98–125.PubMedCrossRefGoogle Scholar
  177. Raman I, Trussell LO (1992) The kinetics of the responses to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173–186.PubMedCrossRefGoogle Scholar
  178. Raman I, Zhang S, Trussell LO (1994) Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. J Neurosci 14:4998–5010.PubMedGoogle Scholar
  179. Ramon y Cajal S (1908) Les ganglions terminaux du nerf acoustique des oiseaux. Trab Inst Cajal Invest Biol 6:195–225.Google Scholar
  180. Reyes AD, Rubel EW, Spain WJ (1994) Membrane properties underlying the firing of neurons in the avian cochlear nucleus. J Neurosci 14:5352–5364.PubMedGoogle Scholar
  181. Rieppel O, deBraga M (1996) Turtles as diapsid reptiles. Nature 384:453–455.CrossRefGoogle Scholar
  182. Roberts BL, Meredith GE (1992) The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 185–210.CrossRefGoogle Scholar
  183. Roberts BL, Maslam S, Los I, Van Der Jagt B (1994) Coexistence of calcitonin gene-related peptide and choline acetyltransferase in eel efferent neurons. Hear Res 74:231–237.PubMedCrossRefGoogle Scholar
  184. Rogers J (1989) Two calcium binding proteins mark many chick sensory neurons. Neuroscience 31:697–709.PubMedCrossRefGoogle Scholar
  185. Rubel EW, Parks TN (1975) Organization and development of brainstem auditory nuclei of the chicken: Tonotopic organization of N. Magnocellularis and N. Laminaris. J Comp Neurol 164:411–434.PubMedCrossRefGoogle Scholar
  186. Rubel EW, Parks TN (1988) Organization and development of the avian brainstem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley & Sons, pp. 3–92.Google Scholar
  187. Rubsamen R, Dorrscheidt GJ (1986) Tonotopic organization of the auditory forebrain in a songbird, the European starling. J Comp Physiol 158:639–646.CrossRefGoogle Scholar
  188. Sachs MB, Sinnott JM (1978) Responses to tones of single cells in nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J Comp Physiol 126:347–361.CrossRefGoogle Scholar
  189. Sahley TL, Nodar RH, Musiek FE (1997) Efferent Auditory System Structure and Function. San Diego, CA: Singular Publishing Group, Inc.Google Scholar
  190. Sams-Dodd F, Capranica RR (1994) Representation of acoustic signals in the eighth nerve of the Tokay gecko: I. Pure tones. Hear Res 76:16–30.PubMedCrossRefGoogle Scholar
  191. Sams-Dodd F, Capranica RR (1996) Representation of acoustic signals in the eighth nerve of the Tokay gecko: II. Masking of pure tones with noise. Hear Res 100:131–134.PubMedCrossRefGoogle Scholar
  192. Saunders JC, Adler HJ, Pugliano FA (1992) The structural and functional aspects of hair cell regeneration in the chick as a result of exposure to intense sound. Exp Neurol 115:13–17.PubMedCrossRefGoogle Scholar
  193. Scheich H, Langer G, Bonke D (1979) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species specific calls and synthetic stimuli: II. Discrimination of iambus-like calls. J Comp Physiol 32:257–276.CrossRefGoogle Scholar
  194. Schermuly L, Klinke R (1990) Infrasound sensitive neurons in the pigeon cochlear ganglion. J Comp Physiol 166:355–363.CrossRefGoogle Scholar
  195. Schwarz DWF, Schwarz IE, Tomlinson RD (1978) Avian efferent vestibular neurons identified by axonal transport of [3Hladenosine and horseradish peroxidase. Brain Res 155:103–107.PubMedCrossRefGoogle Scholar
  196. Schwarz DWF, Schwarz IE, Frederickson JM, Landolt JP (1981) Efferent vestibular neurons: a study employing retrograde tracer methods in the pigeon (Columba livia). J Comp Neurol 196:1–12.PubMedCrossRefGoogle Scholar
  197. Schwarz DWF, Schwarz IE, Derso A (1992) Cochlear efferent neurons projecting to both ears in the chicken, Gallus domesticus. Hear Res 60:110–114.PubMedCrossRefGoogle Scholar
  198. Smeets WZ, Gonzalez A (1994) Sensorimotor integration in the brain of reptiles. Eur J Morphol 32:307–310.PubMedGoogle Scholar
  199. Smith CA (1985) Inner ear. In: King AS, McLelland J (eds) Form and Function in Birds, Vol 3. London: Academic Press, pp. 273–310.Google Scholar
  200. Smith ZDJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239.PubMedCrossRefGoogle Scholar
  201. Smolders JWT, Klinke R (1986) Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L) to single tones and clicks. Hear Res 24: 89–103.PubMedCrossRefGoogle Scholar
  202. Soares D, Simon J, Carr C (1999) The cochlear nuclei of the caiman. Soc Neurosci Abstr (in press).Google Scholar
  203. Striedter GF (1994) The vocal control pathways in budgerigars differ from those in songbirds. J Comp Neurol 343:35–56.PubMedCrossRefGoogle Scholar
  204. Striedter GF (1997) The telencephalon of tetrapods in evolution. Brain Behav Evol 49:179–213.PubMedCrossRefGoogle Scholar
  205. Striedter GF, Marchant TA, Beydler S (1998) The “neostriatum” develops as part of the lateral pallium in birds. J Neurosci 18:5839–5849.PubMedGoogle Scholar
  206. Strutz J (1981) The origin of centrifugal fibers to the inner ear in Caiman crocodilus: a horseradish peroxidase study. Neurosci Lett 27:95–100.PubMedCrossRefGoogle Scholar
  207. Strutz J (1982) The origin of efferent fibers to the inner ear in a turtle (Terrapene ornata). A horseradish peroxidase study. Brain Res 244:165–168.PubMedCrossRefGoogle Scholar
  208. Strutz J, Schmidt C (1982) Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). Acta Otolaryngol 94:45–51.PubMedCrossRefGoogle Scholar
  209. Strutz J, Schmidt CL, Sturmer C (1980) Origin of efferent fibers of the vestibular apparatus in goldfish. A horseradish peroxidase study. Neurosci Lett 18: 5–9.PubMedCrossRefGoogle Scholar
  210. Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. J Neurophysiol 53:201–216.PubMedGoogle Scholar
  211. Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.PubMedGoogle Scholar
  212. Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci U S A 83:8400–8404.PubMedCrossRefGoogle Scholar
  213. Szpir MR, Sento S, Ryugo DK (1990) The central projections of the cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547.PubMedCrossRefGoogle Scholar
  214. Szpir MR, Wright DD, Ryugo DK (1995) Neuronal organization of the cochlear nuclei in alligator lizards: a light and electron microscopic investigation. J Comp Neurol 357:217–241.PubMedCrossRefGoogle Scholar
  215. Takahashi T, Konishi M (1986) Selectivity for interaural time difference in the owl’s midbrain. J Neurosci 6:3413–3422.PubMedGoogle Scholar
  216. Takahashi T, Konishi M (1988a) The projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274:190–211CrossRefGoogle Scholar
  217. Takahashi T, Konishi M (1988b) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238.CrossRefGoogle Scholar
  218. Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786.PubMedGoogle Scholar
  219. Takahashi T, Carr CE, Brecha N, Konishi M (1987) Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. J Neurosci 7:1843–1856.PubMedGoogle Scholar
  220. Takahashi T, Wagner H, Konishi M (1988) The role of commissural projections in the representation of bilateral space in the barn owl’s inferior colliculus. J Comp Neurol 281:545–554.CrossRefGoogle Scholar
  221. Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35:20–65.PubMedCrossRefGoogle Scholar
  222. Tanaka K, Smith CA (1978) Structure of the chicken’s inner ear. SEM and TEM study. Am J Anat 153:251–272.PubMedCrossRefGoogle Scholar
  223. ten Donkelaar HJ, Bangma GC, Barbas-Henry HA, de Boer-van Huizen R, Wolters JG (1987) The brain stem in a lizard, Varanos exanthenzaticus. Adv Anat Embryol Cell Biol 103:56–60.CrossRefGoogle Scholar
  224. Theurich M, Langer G, Scheich H (1984) Infrasound responses in the midbrain of the guinea fowl. Neurosci Lett 49:81–86.PubMedCrossRefGoogle Scholar
  225. Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7:487–492.PubMedCrossRefGoogle Scholar
  226. Tucci DL, Rubel EW (1990) Physiological status of regenerated hair cells in the avian inner ear following aminoglycoside ototoxicity. Otolaryngol Head Neck Surg 103:443–450.PubMedGoogle Scholar
  227. Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642.PubMedCrossRefGoogle Scholar
  228. Vicario DS (1994) Motor mechanisms relevant to auditory-vocal interactions in songbirds. Brain Behav Evol 44:265–278.PubMedCrossRefGoogle Scholar
  229. Vicario DS, Nottebohm F (1987) Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus. J Comp Neurol 271:346–354.CrossRefGoogle Scholar
  230. Volman SF (1996) Quantitative assessment of song-selectivity in the zebra finch higher vocal center. J Comp Physiol 178:849–862.CrossRefGoogle Scholar
  231. Volman SF, Konishi M (1990) Comparative physiology of sound localization in four species of owls. Brain Behav Evol 36:196–215.PubMedCrossRefGoogle Scholar
  232. von Bartheld CS, Code RA, Rubel EW (1989) GABAergic neurons in brainstem auditory nuclei of the chick: distribution, morphology, and connectivity. J Comp Neurol 287:470–483.CrossRefGoogle Scholar
  233. Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13:371–386.PubMedGoogle Scholar
  234. Wagner H, Takahashi T, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. J Neurosci 7:3105–3116.PubMedGoogle Scholar
  235. Wang Y, Raphael Y (1996) Re-innervation patterns of chick auditory sensory epithelium after acoustic overstimulation. Hear Res 97:11–18.PubMedCrossRefGoogle Scholar
  236. Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol 166:83–95.CrossRefGoogle Scholar
  237. Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol 166:721–734.CrossRefGoogle Scholar
  238. Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.CrossRefGoogle Scholar
  239. Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor organ morphology. Brain Res 115:71–90.PubMedCrossRefGoogle Scholar
  240. Westerberg BD, Schwarz DWF (1995) Connections of the superior olive in the chicken. J Otolaryngol 24:20–30.PubMedGoogle Scholar
  241. Weyer EG (1978) The Reptile Ear. Princeton, NJ: Princeton University Press.Google Scholar
  242. Whitehead MC, Morest DK (1978) Morphogenesis of synaptic endings of cochlear fibers in the chick basilar papilla. Soc Neurosci Abstr 4:397.Google Scholar
  243. Whitehead MC, Morest DK (1981) Dual populations of efferent and afferent cochlear axons in the chicken. Neuroscience 6:2351–2365.PubMedCrossRefGoogle Scholar
  244. Wilczynski W (1984) Central neural systems subserving a homoplasous periphery. Am Zool 24:755–763.Google Scholar
  245. Wild JM (1987) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408:303–307.PubMedCrossRefGoogle Scholar
  246. Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62.PubMedCrossRefGoogle Scholar
  247. Winter P, Schwartzkopf J (1961) Form and zellzahl der akustischen nervenzentren in der medulla oblongata von eulen (Striges). Experientia 17:515–516.PubMedCrossRefGoogle Scholar
  248. Woolf NK, Sachs MB (1977) Phase-locking to tones in avian auditory nerve fibers. J Acoust Soc Am 62:46.CrossRefGoogle Scholar
  249. Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 7:1373–1378.Google Scholar
  250. Young SR, Rubel EW (1986) Embryogenesis of arborization pattern and topography of individual axons in n. laminaris of the chicken brain stem. J Comp Neurol 254:425–459.PubMedCrossRefGoogle Scholar
  251. Zardoya R, Meyer A (1998) Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci U S A 95:14226–14231.PubMedCrossRefGoogle Scholar
  252. Zaretsky MD, Konishi M (1976) Tonotopic organization in the avian telencephalon. Brain Res 111:167–171.PubMedCrossRefGoogle Scholar
  253. Zhang S, Trussell LO (1994) A characterization of excitatory postsynaptic poten-tials in the avian nucleus magnocellularis. J Neurophysiol 72:705–718.PubMedGoogle Scholar
  254. Zidanic M, Fuchs PA (1995) Efferent innervation of the chick cochlea revealed by antibodies to choline acetyltransferase (ChAT) and synapsin. Assn Res Oto-laryngol Abstr 18:193.Google Scholar
  255. Zidanic M, Fuchs PA (1996) Synapsin-like immunoreactivity in the chick cochlea: specific labeling of efferent nerve terminals. Aud Neurosci 2:347–362.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Catherine E. Carr
  • Rebecca A. Code

There are no affiliations available

Personalised recommendations