Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 13))

Abstract

The reader may well ask the question: Why deal with the hearing organ of lizards and not all reptiles? The answer lies in the great diversity of the group of animals placed under the old term “reptiles”; it has long been recognized that they are a highly diverse assemblage of animals. This diversity is equally great in the structure of their hearing organs, and at least three basic structures of hearing organs can be distinguished, the turtle type, the archosaur type, and the lizard type. One of the “reptilian” lines, the crocodiles, alligators, and their relatives, are more closely related to the birds than to other reptiles and they are placed with the birds in the group Archosauria. The characteristics of their hearing organs is dealt with in this volume by Gleich and Manley in Chapter 3. The turtles or Chelonia are difficult to classify, and the only certain thing is that they have been a separate group since the Triassic period. Since my earlier review (Manley 1990), much work has been carried out on the ion channels of their hair cells (e.g., Ricci and Fettiplace 1998), but to cover all this work would exceed the limits of the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Authier S, Manley GA (1995) A model of frequency tuning in the basilar papilla of the tokay gecko, Gekko gecko. Hear Res 82:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bagger-Sjöbäck D (1976) The cellular organization and nervous supply of the basilar papilla in the lizard, Calotes versicolor. Cell Tiss Res 165:141–156.

    Google Scholar 

  • Bagger-Sjöbäck D, Wersäll J (1973) The sensory hairs and tectorial membrane of the basilar papilla in the lizard Calotes versicolor. J Neurocytol 2:329–350.

    Article  PubMed  Google Scholar 

  • Baird IL (1970) The anatomy of the reptilian ear. In: Gans C, Parsons TS (eds) Biology of the Reptilia Vol 2. New York, London: Academic Press, pp. 193–275.

    Google Scholar 

  • Berger K (1924) Experimentelle Studien über Schallperzeption bei Reptilien. Z vergl Physiol 1:517–540.

    Article  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechani-cal responses of isolated cochlear outer hair cells. Science 227:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Dodd F, Capranica RR (1992) A comparison of anesthetic agents and their effects on the response properties of the peripheral auditory system. Hear Res 62:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory nerve fiber activity in the tokay gecko: II, temperature effect on tuning. J Comp Physiol A 142:219–226.

    Article  Google Scholar 

  • Eatock RA, Weiss TF (1986) Relation of discharge rate to sound-pressure level for cochlear nerve fibers in the alligator lizard. Abstracts 9th Mtg Assoc Res Otolaryngol pp. 63–64.

    Google Scholar 

  • Eatock RA, Manley GA, Pawson L (1981) Auditory nerve fiber activity in the tokay gecko: I, implications for cochlear processing. J Comp Physiol A 142:203–218.

    Article  Google Scholar 

  • Eatock RA, Saeki M, Hutzler MJ (1993) Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard’s cochlea. J Neurosci 13:1767–1783.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Weiss T, Otto KL (1991) Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: Implications for cochlear mechanisms. J Neurophysiol 65:1580–1597.

    PubMed  CAS  Google Scholar 

  • Estes R, de Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Estes R, Pregill, G (eds) Phylogenetic Relationships of the Lizard Families. Stanford: Stanford University Press, pp. 119–281.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates. Chicago: Hill-Fay Associates.

    Google Scholar 

  • Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10:421–425.

    Article  Google Scholar 

  • Freeman DM, Weiss TF (1990) Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear Res 48:3768.

    Google Scholar 

  • Frishkopf LS, DeRosier DJ (1983) Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea. Hear Res 12:393–404.

    Article  PubMed  CAS  Google Scholar 

  • Holmes RM, Johnstone BM (1984) Gross potentials recorded from the cochlea of the skink Tiliqua rugosa. II. Increases in metabolic rate and hearing responsiveness during austral spring. J Comp Physiol A 154:729–738.

    Article  Google Scholar 

  • Holton T (1980) Relations between frequency selectivity and two-tone rate suppression in lizard cochlear-nerve fibers. Hear Res 2:21–38.

    Article  PubMed  CAS  Google Scholar 

  • Holton T, Hudspeth AJ (1983) A micromechanical contribution to cochlear tuning and tonotopic organization. Science 222:508–510.

    Article  PubMed  CAS  Google Scholar 

  • Holton T, Weiss TF (1978) Two-tone rate suppression in lizard cochlear nerve fibers, relation to receptor organ morphology. Brain Res 159:219–222.

    Article  PubMed  CAS  Google Scholar 

  • Holton T. Weiss TF (1983) Frequency selectivity of hair cells and nerve fibers in the alligator lizard cochlea. J Physiol 345:241–260.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1997) Mechanical amplification of stimuli by hair cells. Curr Opin Neurobiol 7:480–486.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Gillespie PG (1994) Pulling strings to tune transduction: adaptation by hair cells. Neuron 12:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone JR, Johnstone BM (1969a) Electrophysiology of the lizard cochlea. Exp Neurol 24:99–109.

    Article  CAS  Google Scholar 

  • Johnstone JR, Johnstone BM (1969b) Unit responses from the lizard auditory nerve. Exp Neurol 24:528–537.

    Article  CAS  Google Scholar 

  • Klinke R (1979) Comparative physiology of primary auditory neurones. In: Hoke M, de Boer E (eds) Models of the Auditory System and Related Signal Processing Techniques. Scand Audiol Suppl 9:49–61.

    Google Scholar 

  • Köppl C (1988) Morphology of the basilar papilla of the bobtail skink Tiliqua rugosa. Hear Res 35:209–228.

    Article  PubMed  Google Scholar 

  • Köppl C. (1995) Otoacoustic emissions as an indicator for active cochlear mechanics: a primitive property of vertebrate auditory organs, In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific, pp. 207–216.

    Google Scholar 

  • Köppl C, Authier S (1995) Quantitative anatomical basis for a model of micromechanical frequency tuning in the tokay gecko, Gekko gecko. Hear Res 82:1425.

    Article  Google Scholar 

  • Köppl C, Manley GA (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: II. Tonotopic organization and innervation pattern of the basilar papilla. J Comp Physiol A 167:101–112.

    Article  Google Scholar 

  • Köppl C, Manley GA (1990b) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: III. Patterns of spontaneous and tone-evoked nerve-fiber activity. J Comp Physiol A 167:113–127.

    Article  Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 489–509.

    Chapter  Google Scholar 

  • Köppl C, Manley GA (1993a) Distortion-product otoacoustic emissions in the bobtail lizard. 2: Suppression tuning characteristics. J Acoust Soc Amer 93:2834–2944.

    Article  Google Scholar 

  • Köppl C, Manley GA (1993b) Spontaneous otoacoustic emissions in the bobtail lizard. I. General characteristics. Hear Res 71:157–169.

    Article  Google Scholar 

  • Köppl C, Manley GA (1994) Spontaneous otoacoustic emissions in the bobtail lizard. II: Interactions with external tones. Hear Res 72:159–170.

    Article  PubMed  Google Scholar 

  • Köppl C, Manley GA, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: V. Seasonal effects of anaesthesia. J Comp Physiol A 167:139–144.

    Article  Google Scholar 

  • Lee MSY (1997) The phylogeny of varanoid lizards and the affinities of snakes. Phil Trans R Soc Lond B 352:53–91.

    Article  Google Scholar 

  • Manley GA (1976) Auditory responses from the medulla of the monitor lizard Varanus bengalensis. Brain Res 102:329–324.

    Article  Google Scholar 

  • Manley GA (1977) Response patterns and peripheral origin of auditory nerve fibers in the monitor lizard, Varanus bengalensis. J Comp Physiol A 118:249–260.

    Article  Google Scholar 

  • Manley GA (1979) Preferred intervals in the spontaneous activity of primary audi-tory neurones. Naturwiss 66:582.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of the reptiles. Progr Sens Physiol 2:49–134.

    Article  Google Scholar 

  • Manley GA (1986) The evolution of the mechanisms of frequency selectivity in vertebrates. In: Moore BCJ, Patterson RD (eds) Auditory Frequency Selectivity. New York, London: Plenum Press, pp. 63–72.

    Chapter  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA (1997) Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 32–38.

    Google Scholar 

  • Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells, and myosin motors. J Acoust Soc Am 102:1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O (1984) Avian primary auditory neurones: the relationship between characteristic frequency and preferred intervals. Naturwiss 71:592–594.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Johnstone BM (1974) Middle-ear function in the guinea pig. J Acoust Soc Am 56:571–576.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C (1992) A comparison of peripheral tuning measures: primary afferent tuning curves versus suppression tuning curves of spontaneous and distortion-product otoacoustic emissions. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception. Oxford, New York: Pergamon Press, pp. 151–157.

    Google Scholar 

  • Manley GA, Köppl C (1994) Spontaneous otoacoustic emissions in the bobtail lizard. III: Temperature effects. Hear Res 72:171–180.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Yates GK, Köppl C (1988) Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear Res 33:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Yates GK (1989) Micromechanical basis of high-frequency tuning in the bobtail lizard. In: Wilson JP, Kemp D (eds), Cochlear Mechanisms—Structure, Function and Models. New York: Plenum Press, pp. 143–150.

    Chapter  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: I. Frequency tuning of auditory-nerve fibers. J Comp Physiol A 167:89–99.

    Article  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1990b) Components of the 2f1-f2 distortion product in the ear canal of the bobtail lizard. In: Dallos P, Geisler CD, Matthews JW, Ruggero M, Steele CR (eds) Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 210–217.

    Google Scholar 

  • Manley GA, Yates GK, Köppl C and Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: IV. Phase locking of auditory-nerve fibers. J Comp Physiol A 167:129–138.

    Article  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1993) Distortion-product otoacoustic emissions in the bobtail lizard. 1: General characteristics. J Acoust Soc Am 93:2820–2933.

    Article  Google Scholar 

  • Manley GA, Gallo L, Köppl C (1996) Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius. J Acoust Soc Am 99:1588–1603.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Sneary M (1999) Reversed tonotopic map of the basilar papilla in Gekko gecko. Hear Res 131:107–116.

    Article  PubMed  CAS  Google Scholar 

  • Marcellini D (1977) Acoustic and visual display behavior of gekkonid lizards. Am Zool 17:251–260.

    Google Scholar 

  • Miller MR (1973a) Scanning electron microscope studies of some lizard basilar papillae. Am J Anat 138:301–330.

    Article  CAS  Google Scholar 

  • Miller MR (1973b) A scanning electron microscope study of the papilla basilaris of Gekko gecko. Z Zellforsch 136:307–328.

    Article  CAS  Google Scholar 

  • Miller MR (1975) The cochlear nuclei of lizards. J Comp Neurol 159:375–406.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1978) Further scanning electron microscope studies of lizard auditory papillae. J Morphol 156:381–418.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 169–204.

    Chapter  Google Scholar 

  • Miller MR (1985) Quantitative studies of auditory hair cells and nerves in lizards. J Comp Neurol 232:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 463–487.

    Chapter  Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Beck J (1990) Further serial transmission electron microscopy studies of auditory hair cell innervation in lizards and a snake. Amer J Anat 188:175–184.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ (1974) Cochlear anatomy of the alligator lizard. Brain Behav Evol 10:69–87.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ (1986) Patterns of afferent synaptic contacts in the alligator lizard’s cochlea. J Comp Neurol 248:263–271.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ, Oblak TG (1985) Cochlear nerve of the alligator lizard. J Comp Neurol 233:463–472.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ, Williams RS (1987) Auditory stereocilia in the alligator lizard. Hear Res 25:11–21.

    Article  PubMed  CAS  Google Scholar 

  • Peake WT, Ling A (1980) Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity. J Acoust Soc Am 67:1736–1745.

    Article  PubMed  CAS  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506:159–173.

    Article  PubMed  CAS  Google Scholar 

  • Rose C, Weiss TF (1988) Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: evidence for a cochlear origin of timing and non-timing neural pathways. Hear Res 33:151–166.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Peake WT, White JR (1984) Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard. Hear Res 13:141–158.

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F, Capranica RR (1994) Representation of acoustic signals in the eighth nerve of the tokay gecko: I. Pure tones. Hear Res 76:16–30.

    Article  PubMed  CAS  Google Scholar 

  • Szpir MR, Sento S, Ryugo DK (1990) Central projections of cochlear nerve fibers in the alligator lizard. J Comp Physiol 295:530–547.

    CAS  Google Scholar 

  • Talmadge CL, Tubis A, Wit HP, Long GR (1991) Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillations? J Acoust Soc Am 89:2391–2399.

    Article  PubMed  CAS  Google Scholar 

  • Teresi PV (1985) Hair cell innervation patterns in the papilla basilaris of the fence lizard Sceloporus occidentales. Dissertation, University of California, San Francisco.

    Google Scholar 

  • Turner RG (1987) Neural tuning in the granite spiny lizard. Hear Res 26:287–299.

    Article  PubMed  CAS  Google Scholar 

  • Turner RG, Muraski AA, Nielsen DW (1981) Cilium length: influence on neural tonotopic organization. Science 213:1519–1521.

    Article  PubMed  CAS  Google Scholar 

  • van Dijk P, Manley GA, Gallo L, Pavusa A (1996) Statistical properties of spontaneous otoacoustic emissions in one bird and three lizard species. J Acoust Soc Am 99:1588–1603.

    Article  Google Scholar 

  • van Dijk P, Manley GA, Gallo L (1998) Correlated amplitude fluctuations of spontaneous otoacoustic emissions in six lizard species. J Acoust Soc Am 104:1559–1564.

    Article  Google Scholar 

  • van Dijk P, Manley GA, Gallo L, Pavusa A, Taschenberger G (1996) Statistical properties of spontaneous otoacoustic emissions in one bird and three lizard species. J Acoust Soc Am 100:2220–2227.

    Article  Google Scholar 

  • Weiss TF, Leong R (1985a) A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage. Hear Res 20:157–174.

    Article  CAS  Google Scholar 

  • Weiss TF, Leong R (1985b) A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage. Hear Res 20:175–195.

    Article  CAS  Google Scholar 

  • Weiss TF, Rose C (1988) Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard. Hear Res 33:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Werner YL (1972) Temperature effects on inner-ear sensitivity in six species of iguanid lizards. J Herpetol 6:147–177.

    Article  Google Scholar 

  • Werner YL (1976) Optimal temperatures for inner-ear performance in gekkonid lizards. J Exp Zool 195:319–352.

    Article  PubMed  CAS  Google Scholar 

  • Werner YL, Frankenberg E, Adar O (1978) Further observations on the distinctive vocal repertoire of Ptyodactylus hasselquistii CF. hasselquistii (Reptilia: Gekkonidae). Israel J Zool 27:176–188.

    Google Scholar 

  • Weyer EG (1978) The Reptile Ear. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Whitehead ML, Lonsbury-Martin B, Martin GK, McCoy MJ (1996) Otoacoustic emissions: animal models and clinical observations. In: Van De Water T, Popper A, Fay R (eds) Clinical Aspects of Hearing. New York: Springer-Verlag, pp. 199–257.

    Chapter  Google Scholar 

  • Wu Y-C, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Molec Biol 63:131–158.

    Article  CAS  Google Scholar 

  • Zurek PM (1985) Acoustic emissions from the ear: a summary of results from humans and animals. J Acoust Soc Am 78:340–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manley, G.A. (2000). The Hearing Organs of Lizards. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1182-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1182-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7036-2

  • Online ISBN: 978-1-4612-1182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics