Neuroimaging pp 83-106 | Cite as

Basic Pulse Sequences

  • Wendell A. Gibby


A “bewildering” array of pulse sequences is available for magnetic resonance imaging.1 Slight variations on these sequences have led to various acronyms. Some pulse sequences are nearly synonymous with or identical to others but have been given different names by different authors. Spin-echo (SE), inversion recovery (IR), short time inversion recovery (STIR), gradient recalled acquisition in the steady state (GRASS), steady-state free precession (SSFP), Carr-Purcell-Meiboom-Gill (CPMG) are but a few in the current literature. On top of that, with each new pulse sequence modified by variations of gradients and acquisition times, equipment manufacturers have coined acronyms for their own particular usage (Appendix A).


Pulse Sequence Inversion Recovery Free Induction Decay Longitudinal Magnetization Short Time Inversion Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackson EF, Ginsberg LE, Schomer DF, Leeds NE. A review of MRI pulse sequences and techniques in 10. neuroimaging. Surg Neurol 1997; 47: 185 – 199.PubMedCrossRefGoogle Scholar
  2. 2.
    Hahn EL. Spin-echoes. Phys Rev 1955; 80: 580 – 594.CrossRefGoogle Scholar
  3. 3.
    Wehrli FW, MacFall JR, Glover GH, et al. The dependence of nuclear magnetic resonance (NMR) image contrast on intrinsic and pulse sequence timing parameters. MR Imaging 1984; 2 (1): 3 – 16.Google Scholar
  4. 4.
    Perman WH, Hilal SK, Simon HE, Maudsley AA. Contrast manipulation in NMR imaging. MR Imaging 1984;2(1):23–13. 32.Google Scholar
  5. 5.
    Plewes DB. The AAPM/RSNA physics tutorial for residents: contrast mechanisms in spin-echo MR imaging. Radio Graphics 1994; 14 (6): 1389 – 1404.Google Scholar
  6. 6.
    Wehrli FW, MacFall JR, Shutts D, Breger R, Herfkens. Mechanisms of contrast in NMR imaging. J Comput Assist Tomogr 1984; 8 (3): 369 – 380.PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson TR, Hendrick RE, Hendee WR. Selection of pulse sequences producing maximum tissue contrast in magnetic resonance imaging. MR Imaging 1984; 2 (4): 285 – 294.Google Scholar
  8. 8.
    Wehrli FW, Breger RK, MacFall JR, et al. Quantification of contrast in clinical MR brain imaging at high magnetic field: original investigations. Invest Radiology 1985; 20 (4): 360 – 369.CrossRefGoogle Scholar
  9. 9.
    Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Review 1954; 94: 630 – 638.CrossRefGoogle Scholar
  10. 10.
    Meiboom S, Gill D. Carr-Purcell-Meiboom-Gill sequence (CPMG). Rev Sci Instr 1959; 29: 688 – 691.CrossRefGoogle Scholar
  11. 11.
    Bydder GM,Young IR. MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 1985; 9 (4): 659 – 675.CrossRefGoogle Scholar
  12. 12.
    Hendrick RE, Nelson TR, Hendee WR. Phase detection and contrast loss in magnetic resonance imaging. MR Imaging 1984; 2 (4): 279 – 283.Google Scholar
  13. 13.
    Simmons A, Barker GJ, Tofts PS, Gass A, Arridge SR. A method for visualization of MRI partial volume regions-PAIR (partial volume sensitized inversion recovery imaging). MR Imaging 1994; 12 (5): 821 – 826.Google Scholar
  14. 14.
    Mills TC, Ortendahl DA, Hylton NM, Crooks LE, Carlson JW, Kaufman L. Partial flip angle MR imaging. Radiology 1987; 162: 531 – 539.PubMedGoogle Scholar
  15. 15.
    Edelstein WA, Bottomley PA, Hart HR, Smith LS. Signal, noise and contrast in nuclear magnetic resonance (NMR) imaging. J Comput Assist Tomogr 1983; 7 (3): 391 – 401.PubMedCrossRefGoogle Scholar
  16. 16.
    Moran PR, Kumar NG, Karstaedt N, Jackels SC. Tissue contrast enhancement: image reconstruction algorithm and selection of TI in inversion recovery MRI. MR Imaging 1986; 4: 229 – 235.Google Scholar
  17. 17.
    Huk W, Heindel W, Deimling M, Stetter E. Nuclear magnetic resonance (NMR) tomography of the central nervous system: comparison of two imaging sequences. J Comput Assist Tomogr 1983; 7 (3): 468 – 475.PubMedCrossRefGoogle Scholar
  18. 18.
    Atlas SW, Grossman RI, Hackney DB, Goldberg HI, Bilaniuk LT, Zimmerman RA. STIR MR imaging of the orbit. AJNR 1988; 9: 969 – 974.Google Scholar
  19. 19.
    Takehara S, Tanaka T, Uemura K, et al. Optic nerve injurydemonstrated by MRI with STIR sequences. Neuroradiology 1994; 36: 512 – 514.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson G, Miller DH, MacManus D, et al. STIR sequences in NMR imaging of the optic nerve. Neuroradiology 1987; 29 (13): 238 – 245.PubMedCrossRefGoogle Scholar
  21. 21.
    Tien RD. Fat suppression MR imaging and neuroradiology: techniques and clinical application. Review. AJR 1992; 158 (2): 369 – 379.Google Scholar
  22. 22.
    Krinsky G, Rofsky NM, Weinreb JC. Nonspecificity of short inversion time inversion recovery (STIR) as a technique of fat suppression: pitfalls in image interpretation. AJR 1996; 166: 523 – 526.PubMedGoogle Scholar
  23. 23.
    Hittmair K, Mallek R, Prayer D, Schindler EG, Kollegger H. Spinal cord lesions in patients with multiple sclerosis: comparison of MR pulse sequences. AJNR 1996; 17: 1555 – 1565.PubMedGoogle Scholar
  24. 24.
    Rydberg JN. Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 1994; 193: 173 – 180.PubMedGoogle Scholar
  25. 25.
    Rydberg JN. Contrast optimization of FLAIR imaging. MRM 1995; 34: 868 – 876.Google Scholar
  26. 26.
    Alexander JA, Sheppard S, Davis PC, Salverda P. Adult cerebrovascular disease: role of modified rapid fluid attenuated inversion-recovery sequences. AJNR 1996; 17: 1507 – 1513.PubMedGoogle Scholar
  27. 27.
    Filippi M, Yousry T, Baratti C, et al. Quantitative assessment of MRI lesion load in multiple sclerosis: a comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 1996; 119: 1349 – 1355.PubMedCrossRefGoogle Scholar
  28. 28.
    Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, et al. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992; 16 (6): 841 – 844.PubMedCrossRefGoogle Scholar
  29. 29.
    Murata T, Itoh S, Koshino Y, et al. Serial cerebral MRI with FLAIR sequences in acute carbon monoxide poisoning. J Comput Assist Tomogr 1995; 19 (4): 631 – 634.PubMedCrossRefGoogle Scholar
  30. 30.
    DeCoene B, Hajnal JV, Gatehouse P, et al. MR of brain using fluid attenuated inversion recovery (FLAIR) pulse sequences. AJNR 1992; 13: 1555.Google Scholar
  31. 31.
    Araki Y, Ashikaga R, Takahashi S, Ueda J, Ishida O. High signal intensity of the infundibular stalk on fluid-attenuated inversion recovery MR. AJNR 1997; 18: 89 – 93.PubMedGoogle Scholar
  32. 32.
    Brant-Zawadzki M, Atkinson D, Detrick M, Bradley WG, Scidmore G. Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction: initial clinical experience in 50 patients. Stroke 1996; 27 (7): 1187 – 1191.PubMedCrossRefGoogle Scholar
  33. 33.
    Rosen BR, Wedeen VJ, Brady TJ. Selective saturation NMR. J Comput Assist Tomogr 1984; 8 (5): 813 – 818.PubMedCrossRefGoogle Scholar
  34. 34.
    Simon JH, Szumowski J. Proton (fat/water) chemical shift imaging in medical magnetic resonance imaging. Current status. Invest Radiology 1992; 27 (10): 865 – 873.CrossRefGoogle Scholar
  35. 35.
    Moran PR. A general approach to T1, T2 and spin-density discrimination sensitivities in NMR imaging sequences. MR Imaging 1984; 2 (1): 17 – 22.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Wendell A. Gibby

There are no affiliations available

Personalised recommendations