Skip to main content

Basic Pulse Sequences

  • Chapter
Neuroimaging
  • 604 Accesses

Abstract

A “bewildering” array of pulse sequences is available for magnetic resonance imaging.1 Slight variations on these sequences have led to various acronyms. Some pulse sequences are nearly synonymous with or identical to others but have been given different names by different authors. Spin-echo (SE), inversion recovery (IR), short time inversion recovery (STIR), gradient recalled acquisition in the steady state (GRASS), steady-state free precession (SSFP), Carr-Purcell-Meiboom-Gill (CPMG) are but a few in the current literature. On top of that, with each new pulse sequence modified by variations of gradients and acquisition times, equipment manufacturers have coined acronyms for their own particular usage (Appendix A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson EF, Ginsberg LE, Schomer DF, Leeds NE. A review of MRI pulse sequences and techniques in 10. neuroimaging. Surg Neurol 1997; 47: 185 – 199.

    Article  PubMed  CAS  Google Scholar 

  2. Hahn EL. Spin-echoes. Phys Rev 1955; 80: 580 – 594.

    Article  Google Scholar 

  3. Wehrli FW, MacFall JR, Glover GH, et al. The dependence of nuclear magnetic resonance (NMR) image contrast on intrinsic and pulse sequence timing parameters. MR Imaging 1984; 2 (1): 3 – 16.

    CAS  Google Scholar 

  4. Perman WH, Hilal SK, Simon HE, Maudsley AA. Contrast manipulation in NMR imaging. MR Imaging 1984;2(1):23–13. 32.

    Google Scholar 

  5. Plewes DB. The AAPM/RSNA physics tutorial for residents: contrast mechanisms in spin-echo MR imaging. Radio Graphics 1994; 14 (6): 1389 – 1404.

    CAS  Google Scholar 

  6. Wehrli FW, MacFall JR, Shutts D, Breger R, Herfkens. Mechanisms of contrast in NMR imaging. J Comput Assist Tomogr 1984; 8 (3): 369 – 380.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson TR, Hendrick RE, Hendee WR. Selection of pulse sequences producing maximum tissue contrast in magnetic resonance imaging. MR Imaging 1984; 2 (4): 285 – 294.

    CAS  Google Scholar 

  8. Wehrli FW, Breger RK, MacFall JR, et al. Quantification of contrast in clinical MR brain imaging at high magnetic field: original investigations. Invest Radiology 1985; 20 (4): 360 – 369.

    Article  CAS  Google Scholar 

  9. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Review 1954; 94: 630 – 638.

    Article  CAS  Google Scholar 

  10. Meiboom S, Gill D. Carr-Purcell-Meiboom-Gill sequence (CPMG). Rev Sci Instr 1959; 29: 688 – 691.

    Article  Google Scholar 

  11. Bydder GM,Young IR. MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 1985; 9 (4): 659 – 675.

    Article  Google Scholar 

  12. Hendrick RE, Nelson TR, Hendee WR. Phase detection and contrast loss in magnetic resonance imaging. MR Imaging 1984; 2 (4): 279 – 283.

    CAS  Google Scholar 

  13. Simmons A, Barker GJ, Tofts PS, Gass A, Arridge SR. A method for visualization of MRI partial volume regions-PAIR (partial volume sensitized inversion recovery imaging). MR Imaging 1994; 12 (5): 821 – 826.

    CAS  Google Scholar 

  14. Mills TC, Ortendahl DA, Hylton NM, Crooks LE, Carlson JW, Kaufman L. Partial flip angle MR imaging. Radiology 1987; 162: 531 – 539.

    PubMed  CAS  Google Scholar 

  15. Edelstein WA, Bottomley PA, Hart HR, Smith LS. Signal, noise and contrast in nuclear magnetic resonance (NMR) imaging. J Comput Assist Tomogr 1983; 7 (3): 391 – 401.

    Article  PubMed  CAS  Google Scholar 

  16. Moran PR, Kumar NG, Karstaedt N, Jackels SC. Tissue contrast enhancement: image reconstruction algorithm and selection of TI in inversion recovery MRI. MR Imaging 1986; 4: 229 – 235.

    CAS  Google Scholar 

  17. Huk W, Heindel W, Deimling M, Stetter E. Nuclear magnetic resonance (NMR) tomography of the central nervous system: comparison of two imaging sequences. J Comput Assist Tomogr 1983; 7 (3): 468 – 475.

    Article  PubMed  CAS  Google Scholar 

  18. Atlas SW, Grossman RI, Hackney DB, Goldberg HI, Bilaniuk LT, Zimmerman RA. STIR MR imaging of the orbit. AJNR 1988; 9: 969 – 974.

    Google Scholar 

  19. Takehara S, Tanaka T, Uemura K, et al. Optic nerve injurydemonstrated by MRI with STIR sequences. Neuroradiology 1994; 36: 512 – 514.

    Article  PubMed  CAS  Google Scholar 

  20. Johnson G, Miller DH, MacManus D, et al. STIR sequences in NMR imaging of the optic nerve. Neuroradiology 1987; 29 (13): 238 – 245.

    Article  PubMed  CAS  Google Scholar 

  21. Tien RD. Fat suppression MR imaging and neuroradiology: techniques and clinical application. Review. AJR 1992; 158 (2): 369 – 379.

    CAS  Google Scholar 

  22. Krinsky G, Rofsky NM, Weinreb JC. Nonspecificity of short inversion time inversion recovery (STIR) as a technique of fat suppression: pitfalls in image interpretation. AJR 1996; 166: 523 – 526.

    PubMed  CAS  Google Scholar 

  23. Hittmair K, Mallek R, Prayer D, Schindler EG, Kollegger H. Spinal cord lesions in patients with multiple sclerosis: comparison of MR pulse sequences. AJNR 1996; 17: 1555 – 1565.

    PubMed  CAS  Google Scholar 

  24. Rydberg JN. Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 1994; 193: 173 – 180.

    PubMed  CAS  Google Scholar 

  25. Rydberg JN. Contrast optimization of FLAIR imaging. MRM 1995; 34: 868 – 876.

    CAS  Google Scholar 

  26. Alexander JA, Sheppard S, Davis PC, Salverda P. Adult cerebrovascular disease: role of modified rapid fluid attenuated inversion-recovery sequences. AJNR 1996; 17: 1507 – 1513.

    PubMed  CAS  Google Scholar 

  27. Filippi M, Yousry T, Baratti C, et al. Quantitative assessment of MRI lesion load in multiple sclerosis: a comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 1996; 119: 1349 – 1355.

    Article  PubMed  Google Scholar 

  28. Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, et al. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992; 16 (6): 841 – 844.

    Article  PubMed  CAS  Google Scholar 

  29. Murata T, Itoh S, Koshino Y, et al. Serial cerebral MRI with FLAIR sequences in acute carbon monoxide poisoning. J Comput Assist Tomogr 1995; 19 (4): 631 – 634.

    Article  PubMed  CAS  Google Scholar 

  30. DeCoene B, Hajnal JV, Gatehouse P, et al. MR of brain using fluid attenuated inversion recovery (FLAIR) pulse sequences. AJNR 1992; 13: 1555.

    CAS  Google Scholar 

  31. Araki Y, Ashikaga R, Takahashi S, Ueda J, Ishida O. High signal intensity of the infundibular stalk on fluid-attenuated inversion recovery MR. AJNR 1997; 18: 89 – 93.

    PubMed  CAS  Google Scholar 

  32. Brant-Zawadzki M, Atkinson D, Detrick M, Bradley WG, Scidmore G. Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction: initial clinical experience in 50 patients. Stroke 1996; 27 (7): 1187 – 1191.

    Article  PubMed  CAS  Google Scholar 

  33. Rosen BR, Wedeen VJ, Brady TJ. Selective saturation NMR. J Comput Assist Tomogr 1984; 8 (5): 813 – 818.

    Article  PubMed  CAS  Google Scholar 

  34. Simon JH, Szumowski J. Proton (fat/water) chemical shift imaging in medical magnetic resonance imaging. Current status. Invest Radiology 1992; 27 (10): 865 – 873.

    Article  CAS  Google Scholar 

  35. Moran PR. A general approach to T1, T2 and spin-density discrimination sensitivities in NMR imaging sequences. MR Imaging 1984; 2 (1): 17 – 22.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gibby, W.A. (2000). Basic Pulse Sequences. In: Zimmerman, R.A., Gibby, W.A., Carmody, R.F. (eds) Neuroimaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1152-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1152-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7025-6

  • Online ISBN: 978-1-4612-1152-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics