Progress and Prospects in Phenomenological Turbulence Models

  • B. E. Launder
Part of the Applied Mathematical Sciences book series (AMS, volume 58)


Despite what the dictionaries say, ‘phenomenological’ linked with ’turbulence model’ means not so much that conformity with observed phenomena is an important factor in fixing the model’s form, but rather that it is based on a too superficial set of observations to allow any very interesting or genuinely useful results to spring from it. In the present workshop, speakers have used the term in its essentially pejorative sense to dismiss models ranging from the mixing-length hypothesis to third moment closure.


Shear Flow Reynolds Stress Energy Dissipation Rate Adverse Pressure Gradient Moment Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Launder, B.E. and Spalding, D.B. Comp. Meth. in Appl. Mech. & Engrg., 1974Google Scholar
  2. 2.
    Launder, B.E. J. Fluid Mech. 67, 569, 1975ADSCrossRefGoogle Scholar
  3. 3.
    Lumley, J.L., Zeman, O. and Siess, J. J. Fluid Mech. 84, 581, 1978MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Gibson, M.M. and Launder, B.E. J. Fluid Mech. 86, 491, 1978ADSMATHCrossRefGoogle Scholar
  5. 5.
    Rodi, W. ZAMM 56, 219, 1976CrossRefGoogle Scholar
  6. 6.
    Lumley, J.L. Advances in Applied Mechanics 18, 123, 1978MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Ettestad, D. and Lumley, J.L. Turbulent Shear Flows-4 (ed. F.J. Durst et al), 87–101, Springer Verlag, New York, 1984Google Scholar
  8. 8.
    Dekeyser, I. and Launder, B.E. Turbulent Shear Flows-4 (ed. F.J. Durst et al), 102, Springer Verlag, New York, 1984Google Scholar
  9. 9.
    Daly, B.J. and Harlow, F.H. Phys. Fluids, 1970Google Scholar
  10. 10.
    Irwin, H.P.A.H. PhD Thesis, Dept. Mech. Engrg., McGill University, Montreal, 1974Google Scholar
  11. 11.
    Leschziner, M.A. “An introduction and guide to the computer code ‘PASSABLE’” UMIST Mech. Eng. Dept. Report, 1982Google Scholar
  12. 12.
    Enayet, M.M., Gibson, M.M., Taylor, A.M. and Yianneskis, M. Int. J. Heat and Fluid Flow 3, 213, 1982CrossRefGoogle Scholar
  13. 13.
    Iacovides, H. and Launder, B.E. Proc. 1st UK National Heat Transfer Conference, I. Chem. Eng. Symp. Series No.86, 1097, 1984Google Scholar
  14. 14.
    Kline, S.J., Cantwell, B. and Lilley, G.M. (editors) Proceedings 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (in 3 volumes), Dept. Mech. Engrg., Stanford University, 1981Google Scholar
  15. 15.
    Rodi, W. and Scheuerer, G. Phys. Fluids 26, 1422–1436, 1983ADSMATHCrossRefGoogle Scholar
  16. 16.
    Khezzar, L. “Computation of two-dimensional boundary layers and wall jets over convex surfaces” MSc Dissertation, Univ. of Manchester Faculty of Engineering (Mech. Eng. Dept.), 1983Google Scholar
  17. 17.
    Gillis, J.C. and Johnson, J.J. “Turbulent boundary layer on a convex curved surface” Rep. HMT 31, Mech. Eng. Dept., Stanford UniversityGoogle Scholar
  18. 18.
    Castro, I. and Bradshaw, P. J. Fluid Mech. 73, 265, 1976ADSCrossRefGoogle Scholar
  19. 19.
    Gibson, M.M. Jones, W.P. and Younis, B. Phys. Fluids 24, 386, 1981ADSMATHCrossRefGoogle Scholar
  20. 20.
    Chou, P.Y. Quart. J. Appl. Math. 3, 38–54, 1945MATHGoogle Scholar
  21. 21.
    Rotta, J.C. Z. Phys. 129, 547, 1951MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Lumley, J.L. and Newman, G. J. Fluid Mech. 72, 161, 1977MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Lumley, J.L. “Prediction Methods for Turbulent Flow - Introduction”, Lecture Series 76, Von Karman Inst., Rhode-StGenese, BelgiumGoogle Scholar
  24. 24.
    Launder, B.E., Morse, A., Rodi, W. and Spalding, D.B. Proc. 1972 Langley Free Shear Flow Conference, NASA SP320, 1973Google Scholar
  25. 25.
    Launder, B.E., Reece, G.J. and Rodi, W. J. Fluid Mech. 68, 537, 1975ADSMATHCrossRefGoogle Scholar
  26. 26.
    Naot, D., Shavit, A. and Wolfshtein, M. Phys. Fluids 16, 738, 1973ADSMATHCrossRefGoogle Scholar
  27. 27.
    Younis, B. PhD Thesis, Faculty of Engineering, University of London, 1984Google Scholar
  28. 28.
    Gibson, M.M. and Younis, B. Manuscript submitted to J. Fluid Mech., 1984Google Scholar
  29. 29.
    Morse, A.P. PhD Thesis, Faculty of Engineering, University of London, 1980Google Scholar
  30. 30.
    Launder, B.E. and Morse, A.P. Turbulent Shear Flows-1, 279–294 (ed. F.J. Durst et al) Springer Verlag, New York, 1979Google Scholar
  31. 31.
    Schumann, U. and Patterson, G.S. J. Fluid Mech. 88, 711, 1978ADSMATHCrossRefGoogle Scholar
  32. 32.
    Champagne, F.H., Harris, V.G. and Corrsin, S.C. J. Fluid Mech. 41, 81, 1970ADSCrossRefGoogle Scholar
  33. 33.
    Reece, G.J. PhD Thesis, Faculty of Engineering, University of London, 1977Google Scholar
  34. 34.
    Ramaprian, B.R. and Tu, S.W. “Study of periodic turbulent pipe flow” IIHR Report No.238, Institute of Hydraulic Research, Univ. of Iowa, Iowa City, 1982Google Scholar
  35. 35.
    Mizushina, T., Maruyama, T. and Hirasawa, H. “Structure of the turbulence in pulsating pipe flows” J. Chemical Engineering of Japan 8, 3, 210–216, 1975CrossRefGoogle Scholar
  36. 36.
    Lumley, J.L. Phys. Fluids 18, 750, 1975ADSCrossRefGoogle Scholar
  37. 37.
    Lin, A. and Wolfshtein, M. Turbulent Shear Flows-2, (ed. L.J.S. Bradbury et al) Springer Verlag, New York, 1980Google Scholar
  38. 38.
    Launder, B.E. AIAAJ 20, 436, 1982ADSCrossRefGoogle Scholar
  39. 39.
    Launder, B.E., Priddin, C.H. and Sharma, B.I. J. Fluids Engrg. 99, 237, 1977Google Scholar
  40. 40.
    Davidov, B. Soviet Physics Doklady 4, 10, 1961ADSGoogle Scholar
  41. 41.
    Pope, S.B. AIAAJ 16, 279, 1978ADSCrossRefGoogle Scholar
  42. 42.
    Forstall, W. and Shapiro, A.H. J. Appl. Mech. 17, 399, 1950Google Scholar
  43. 43.
    Hanjalic, K. and Launder, B.E. ASME J. Fluids Engrg. 102, 1980Google Scholar
  44. 44.
    Sindir, M. PhD Thesis, Dept. Mech. Engrg., Univ. California, Davis, 1981Google Scholar
  45. 45.
    Leschziner, M.A. and Rodi, W. ASME J. Fluids Engrg. 103, 352, 1981CrossRefGoogle Scholar
  46. 46.
    Launder, B.E. Turbulent Shear Flows-2, 3–6 (ed. L.J.S. Bradbury et al) Springer Verlag, New York, 1980Google Scholar
  47. 47.
    Sandri, G. and Cerasoli, C. “Fundamental research in turbulent modelling” Aeronautical Research Associates of Princeton, Inc. Report No.438, 1981Google Scholar
  48. 48.
    Donaldson, C. du P. and Sandri, G. “On the inclusion of eddy structure in second-order-closure models of turbulent flows” AGARD Report, 1982Google Scholar
  49. 49.
    Hanjalic, K., Launder, B.E. and Schiestel, R. Turbulent Shear Flows-2, 36–49 (ed. L.J.S. Bradbury et al) Springer Verlag, New York, 1980Google Scholar
  50. 50.
    Cler, A. Thèse Docteur Ingénieur, Ecole Nat. Sup. Aero. Espace., Toulouse, 1982Google Scholar
  51. 51.
    Schiestel, R. Jo. de Méc. Th. et Appl. 2, 601, 1983MATHGoogle Scholar
  52. 52.
    Donaldson, C. du, P. AIAA J. 10, 4, 1972ADSMATHCrossRefGoogle Scholar
  53. 53.
    Lumley, J.L. and Khajeh Nouri, B. Adv. Geophysics 18A, 169, Academic, 1974ADSGoogle Scholar
  54. 54.
    Rodi, W. “Prediction of free turbulent boundary layers using a 2-equation model of turbulence” PhD Thesis, Faculty of Engineering, University of London, 1972Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • B. E. Launder

There are no affiliations available

Personalised recommendations