Skip to main content

An Introduction and Overview of Various Theoretical Approaches to Turbulence

  • Chapter

Part of the book series: Applied Mathematical Sciences ((AMS,volume 58))

Abstract

Theoretical methods to treat turbulence may be organized along two principal lines: (1) statistical, in which the distribution function of the flow (or equivalently, various moments of the velocity or vorticity field) serve as the basic ingredient; and (2) the dynamical, in which the mechanisms of instability and turbulent coherent structures serve as the primary focus. We include in the former second-order modeling, the two-point moment closures, and methods based on the distribution function. Central to this approach is the assumption that complete knowledge of the flow is not necessary for an approximate knowledge of low-order moments, or other simple features of the flow’s distribution function. The dynamical approach focuses upon some key aspect of turbulence such as coherent structure (vortices) and follows their evolution in detail by employing suitable but perhaps heavily approximate dynamical equations. Practitioners argue that averaging (ensemble or time) may be a final needed step, but may legitimately be done only after developing some understanding of how to represent the relevant structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brachet, M. E., and P.-L. Sulem, 1984: Direct numerical simulation of two-dimensional turbulence. Fourth Beer Sheva Seminar on MHD flows and turbulence. To appear in Progress in Astronautics and Aeronautics.

    Google Scholar 

  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095.

    Article  ADS  Google Scholar 

  • Chollet, J.-P., 1983: Turbulence tridimensionelle isotrope: modelisation statistique des petites schelles et simulation numerique des grandes echelles. These de doctorat en Sciences, Institut de Mecanique de Grenoble, France.

    Google Scholar 

  • Dannevik, W. P., 1984: Two-point closure study of covariance budgets for turbulent Rayleigh-Benard convection. PhD. Thesis, St. Louis University, St. Louis Mo. 166 pp.

    Google Scholar 

  • Fornberg, B., 1977: A numerical study of 2-D turbulence. J. Comp. Phys., 25, 1–31.

    Article  ADS  MATH  Google Scholar 

  • Fox, D. G., and D. K. Lilly, 1972: Numerical simulation of turbulent flow. Rev. Geophys. Space Phys., 10/1, 51–72.

    Article  ADS  Google Scholar 

  • Gage, K. S., 1979: Evidence for a k-5/3 inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sei., 36, 1950–1954.

    Article  ADS  Google Scholar 

  • Gage, K. S. and G. D. Nastrom, 1984: The second workshop on technical aspects of MST radar, Univ. of Illinois, Urbana, 21–25 May.

    Google Scholar 

  • Garrett, C., and W. Munk, 1979: Inertial waves in the ocean. AnnualReview of Fluid Mechanics, Vol. 11, Annual Reviews, 339–369.

    Article  ADS  Google Scholar 

  • Herring, J. R., 1963: Investigation of problems in thermal convection, J. Atmos. Sei., 20, 325–338.

    Article  ADS  Google Scholar 

  • Herring, J. R., 1969: Statistical theory of thermal convection at large Prandtl number. Phys. Fluids, 12, 39–52.

    Article  ADS  MATH  Google Scholar 

  • Herring, J. R., 1973: Statistical turbulence theory and turbulence phenomeno-logy. Proceedings of the Langley Working Conference on Free Turbulent Shear Flows, NASA SP 321, Langley Research Center, VA, 41–66.

    Google Scholar 

  • Herring, J. R., 1980: Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sei., 37, 969–977.

    Article  MathSciNet  Google Scholar 

  • Herring, J. R., and J. C. McWilliams, 1984: Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: effects of intermittency. To appear in J. Fluid Mech.

    Google Scholar 

  • Kraichnan, R. H., 1964: Direct interaction for shear and thermally driven turbulence. Phys. Fluids, 7, 1048–1062.

    Article  MathSciNet  ADS  Google Scholar 

  • Kraichnan, R. H., 1971: An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech., 47, 513–524.

    Article  ADS  MATH  Google Scholar 

  • Kraichnan, R. H., 1976: Eddy viscosity in two and three dimensions. J. Atmos. Sei., 33, 1521–1536.

    Article  ADS  Google Scholar 

  • Leslie, D. C., and G. L. Quarini, 1979: The application of turbulence theory to the formulation of sub-grid scale modeling procedures. J. Fluid Mech., 91, 65–91.

    Article  ADS  MATH  Google Scholar 

  • Lilly, D. K., and E. L. Petersen, 1983: Aircraft measurements of atmospheric kinetic energy spectrum. Tellus, 35 (in press).

    Google Scholar 

  • McWilliams, J. C., 1984: The emergence of isolated, coherent vortices in turbulent flow. To appear in J. Fluid Mech.

    Google Scholar 

  • Ogura, Y., 1963: A consequence of the zero-fourth-order cumulant approximation in the decay of isotropic turbulence, J. Fluid Mech., 16, 33–40.

    Article  ADS  MATH  Google Scholar 

  • Van Zandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575–578.

    Article  ADS  Google Scholar 

  • Weiss, J., 1981: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. La Jolla Institute Report, La Jolla, CA. 123 pp.

    Google Scholar 

  • Zippelius, A., and E. D. Siggia, 1982: Disappearance of stable convec-tion between free-slip boundaries. Phys. Rev., A26, 1788–1790.

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Herring, J.R. (1985). An Introduction and Overview of Various Theoretical Approaches to Turbulence. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) Theoretical Approaches to Turbulence. Applied Mathematical Sciences, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1092-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1092-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96191-0

  • Online ISBN: 978-1-4612-1092-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics