Small and Large Mean Free Paths

  • Carlo Cercignani
Part of the Applied Mathematical Sciences book series (AMS, volume 67)


It was pointed out in Chapter IV, Section 1, that if we want to solve the Boltzmann equation for realistic nonequilibrium situations, we must rely upon approximation methods, in particular, perturbation procedures. In order to do this, we have to look for a parameter ɛ which can be considered to be small in some situations. In Chapter IV, Section 2, ɛ was assumed not to appear directly in the Boltzmann equation. This led us to considering the linearized Boltzmann equation, which turns out to be useful for describing situations in which deviations of velocity and temperature from their average values are small. If we look for different expansions, a first step consists in investigating the order of magnitude of the various terms appearing in the Boltzmann equation. If we denote by τ a typical time scale, by d a typical length scale and by ξ a typical molecular velocity, then [see, for example, Eq. (II.3.15)]: where ∼ denotes that two quantities are of the same order of magnitude, n = ρ/m is the number density of molecules and σ the molecular diameter (or range of the interaction potential).


Free Path Boltzmann Equation Knudsen Number Shock Layer Accommodation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Hilbert, “Math. Ann.” 72, 562 (1912).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    D. Hilbert, “Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen”, Chelsea Publishing Co., New York (1953).MATHGoogle Scholar
  3. [3]
    H. Grad, “Phys. Fluids”, 6,147 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    S. BoGusLawski, “Math. Ann.” 76, 431 (1915).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. F. Morse, “Phys. Fluids”, 7, 1691 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    S. Chapman, “Phil. Trans. Roy. Soc.” A216, 279 (1916); 217, 118 (1917).ADSGoogle Scholar
  7. [7]
    D. Enskog, Dissertation, Uppsala (1917): “Arkiv Mat., Ast. och. Fys” 16, 1 (1921)Google Scholar
  8. [8]
    S. Chapman and T. G. Cowling, “The Mathematical Theory of Non-Uniform Gases”, Cambridge University Press (Cambridge, 1958).Google Scholar
  9. [9]
    J. O. Hirschfelder, C. F. Curtiss and R. D. Bird, “Molecular Theory of Gases and Liquids”, John Wiley and Sons (New York, 1854).Google Scholar
  10. [10]
    J. H. Ferziger and H. G. Kaper, “Mathematical Theory of Transport Processes in Gases”, North Holland (Amsterdam, 1972).Google Scholar
  11. [11]
    R. Schamberg, Ph.D. Thesis, Calif. Inst. Technology (1947).Google Scholar
  12. [12]
    C. Cercignani, University of California, Report No. AS-64-18 (1964).Google Scholar
  13. [13]
    L. Trilling, “Phys. Fluids”, 7, 1681 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    H. Grad, in “Transport Theory”, Bellman et al, eds. SIAM-AMS Proceedings, vol. I, p. 269 AMS (Providence, 1968).Google Scholar
  15. [15]
    C. Cercignani, in “Transport Theory”, Bellman et al, eds. SIAM-AMS Proceedings, vol. I, p. 249, AMS (Providence, 1968).Google Scholar
  16. [16]
    C. Cercignani, “Mathematical Methods in Kinetic Theory”, Plenum Press (New York, 1969).MATHGoogle Scholar
  17. [17]
    P. Welander, “Arkiv Fysik”, 7, 507 (1954).MathSciNetMATHGoogle Scholar
  18. [18]
    C. Cercignani, “Ann. Phys.” (N.Y.) 20, 219 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    S. Albertoni, C. Cercignani and L. Gotusso, “Phys. Fluids”, 6, 993 (1963).ADSCrossRefGoogle Scholar
  20. [20]
    D. R. Willis, “Phys. Fluids”, 5, 127 (1962).ADSMATHCrossRefGoogle Scholar
  21. [21]
    S. K. Loyalka, “Phys. Fluids”, 14, 21 (1971).ADSCrossRefGoogle Scholar
  22. [22]
    S. K. Loyalka, “Phys. Fluids”, 12, 2301 (1969).ADSCrossRefGoogle Scholar
  23. [23]
    P. Bassanini, C. Cercignani and C. D. Pagani, “Int. J. Heat and Mass Transfer”, 10,447(1967).CrossRefGoogle Scholar
  24. [24]
    S. K. Loyalka and J. H. Ferziger, “Phys. Fluids”, 10, 1833 (1967).ADSMATHCrossRefGoogle Scholar
  25. [25]
    S. K. Loyalka and J. H. Ferziger, “Phys. Fluids”, 11, 1668 (1968).ADSMATHCrossRefGoogle Scholar
  26. [26]
    C. Cercignani and G. Tironi, “NUOVO Cimento”, 43, 64 (1966).CrossRefGoogle Scholar
  27. [27]
    C. Cercignani, “Ann. Phys.’’, 40, 469 (1966).MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    C. Cercignani, P. Foresti and F. Sernagiotto, “NUOVO Cimento”, X, 575, 297 (1968).Google Scholar
  29. [29]
    Y. Sone, “J. Phys. Soc. Japan”, 21, 1836 (1966).ADSCrossRefGoogle Scholar
  30. [30]
    M. M. R. Williams, “J. Fluid Mech.”, 45, 759 (1971).ADSMATHCrossRefGoogle Scholar
  31. [31]
    C. Cercignani, “J. Math. Anal, and Appli.”, 10, 568 (1965).MathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Cercignani and C. D. Pagani, in “Rarefied Gas Dynamics”, L. Trilling and H. Wachman, eds., vol. I, p. 269, Academic Press (New York, 1969).Google Scholar
  33. [33]
    S. K. Loyalka and J. W. Cipolla, “Phys. Fluids”, 14, 1656 (1971).ADSCrossRefGoogle Scholar
  34. [34]
    T. Klinç and I. KuŠčcer, “Phys. Fluids”, 15, 1018 (1972).ADSCrossRefGoogle Scholar
  35. [35]
    Y. Sone, in “Rarefied Gas Dynamics”, L. Trilling and H. Wachman, eds., vol. I, p. 243, Academic Press, (New York, 1969).Google Scholar
  36. [36]
    Y. Sone, Presented at the 7th Symposium on Rarefied Gas Dynamics (Pisa, 1970).Google Scholar
  37. [37]
    A. Ganz and L. Sirovich, “Phys. Fluids”, 16, 50 (1973).ADSMATHCrossRefGoogle Scholar
  38. [38]
    J. S. Darrozès, in “Rarefied Gas Dynamics”, L. Trilling and H. Wachman, eds. vol. I, p. 111, Academic Press (New York, 1969).Google Scholar
  39. [39]
    Y. Sone, Kyoto University Research Report N. 24 (1972).Google Scholar
  40. [40]
    Y. S. Pan and R. F. Probstein, in “Rarefied Gas Dynamics”, J. A. Laurmann, ed., vol. II, p. 194, Academic Press, New York (1963).Google Scholar
  41. [41]
    D. Enskog, “Physik Zeitschr.”, 12, 533 (1911).MATHGoogle Scholar
  42. [42]
    S. Chapman and F. W. Dootson, “Phil. Mag.”, 33, 248 (1917).CrossRefGoogle Scholar
  43. [43]
    H. Grad, in “Rarefied Gas Dynamics”, M. Devienne, ed., p. 100, Pergamon Press (New York, 1960).Google Scholar
  44. [44]
    E. A. Johnson, “Phys. Fluids”, 16, 45 (1973).ADSMATHCrossRefGoogle Scholar
  45. [45]
    M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions”, National Bureau of Standards (Washington, 1964).MATHGoogle Scholar
  46. [46]
    S. A. Schaaf, “Handbuch der Physik”, vol. VIII/2, p. 591, Springer (Berlin, 1963).Google Scholar
  47. [47]
    M. N. Kogan, “Rarefied Gas Dynamics”, Plenum Press (New York, 1969).Google Scholar
  48. [48]
    V. P. Shidlovski, “Introduction to Dynamics of Rarefied Gases”, Elsevier (New York, 1967).Google Scholar
  49. [49]
    H. Schuchting, “Boundary Layer Theory”, McGraw-Hill (New York, 1958).Google Scholar
  50. [50]
    J. Stalder, C. Goodwin and M. Creager, NASA Rept. Nos. 1032 (1951) and 1093 (1952).Google Scholar
  51. [51]
    W. A. Gustafson, “A.R.S. Jour.”, 29, 301 (1959).Google Scholar
  52. [52]
    B. M. Schrello, “A.R.S. Jour.”, 30, 8 (1960).Google Scholar
  53. [53]
    G. E. Cook, “Planet Space Sci.”, 13, 929 (1965).ADSCrossRefGoogle Scholar
  54. [54]
    O. K. Moe, Ph.D. Thesis, Univ. of Calif., Los Angeles (1966).Google Scholar
  55. [55]
    F. C. Hurlbut and F. S, Sherman, “Phys. Fluids”, 11, 486 (1968).ADSCrossRefGoogle Scholar
  56. [56]
    R. Riganti and M. G. Chiadò Piat, “Meccanica”, 6, 132 (1971).CrossRefGoogle Scholar
  57. [57]
    C. Cercignani and M. Lampis, “Entropie”, 44,40 (1972).Google Scholar
  58. [58]
    C. Cercignani and M. Lampis, “ZAMP”, 23, 713 (1972).ADSCrossRefGoogle Scholar
  59. [59]
    M. Lampis, in “Rarefied Gas Dynamics”, K. Karamcheti, Ed., p. 369, Academic Press, New York (1974).Google Scholar
  60. [60]
    D. Clausing, “Ann. Physik”, 12, 961 (1932).ADSCrossRefGoogle Scholar
  61. [61]
    E. M. Sparrow and V.K. Johnson, “J. of Heat Transfer”, 6, 841 (1963).CrossRefGoogle Scholar
  62. [62]
    Y. P. Pao and J. Tchao, “Phys. Fluids”, 13, 527 (1970).ADSMATHCrossRefGoogle Scholar
  63. [63]
    M. Knudsen, “Ann. Physik”, 28, 75 (1909).ADSMATHCrossRefGoogle Scholar
  64. [64]
    M. Smoluchowski, “Ann. Physik”, 33, 1559 (1910).ADSCrossRefGoogle Scholar
  65. [65]
    D. R. Willis, Princeton University Aero. Engineering Lab. Report No. 440 (1950).Google Scholar
  66. [66]
    D. R. Willis, in “Rarefied Gas Dynamics”, M. Devienne, ed., p. 246, Pergamon Press (New York, 1960).Google Scholar
  67. [67]
    D. R. Willis and P. Taub, Princeton University Gas Dynamics Laboratory Report No. 726 (1965).Google Scholar
  68. [68]
    D. R. Willis, General Electric Co. TIS 60SD399 (1960).Google Scholar
  69. [69]
    D. R. Willis, Rand Corporation Memorandum TM, 4638, PR (1965).Google Scholar
  70. [70]
    A. L. Cooper and B. B. Hamel, “Phys. Fluids”, 16, 35 (1973).ADSMATHCrossRefGoogle Scholar
  71. [71]
    B. B. Hamel and A. L. Cooper, “Phys. Fluids”, 16, 43 (1973).ADSMATHCrossRefGoogle Scholar
  72. [72]
    J. Smolderen, in “Rarefied Gas Dynamics”, J. H. de Leeuw, ed., vol. I, p. 277, Academic Press, New York (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Carlo Cercignani
    • 1
  1. 1.Department of MathematicsPolitecnico di MilanoMilano (I)Italy

Personalised recommendations