Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 67))

  • 2915 Accesses

Abstract

Because of the nonlinear nature of the collision term, the Boltzmann equation is very difficult to solve and to analyse. In Chapter III, Section 10, we studied a very particular class of solutions; namely, the Maxwellians. The meaning of a Maxwellian distribution is clear: it describes equilibrium states (or slight generalizations of them, characterized by the fact that neither heat flux nor stresses other than isotropic pressure are present). If we want to describe more realistic nonequilibrium situations, when oblique stresses are present and heat transfer takes place, we have to rely upon approximate methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Akhiezer and I. M. Glazman, “Theory of Linear Operators in Hilbert Space” (translated by M. Nestell), Frederick Ungar Publishing Co., New York (1963).

    Google Scholar 

  2. F. Riesz and B. Sz. Nagy, “Functional Analysis” (translated by L. Boron), Frederick Ungar Publishing Co., New York (1955).

    Google Scholar 

  3. T. Kato, “Perturbation Theory for Linear Operators”, Springer-Verlag, N.Y. (1966).

    MATH  Google Scholar 

  4. M. Schechter, “Principles of Functional Analysis”, Academic Press, N.Y. (1971).

    MATH  Google Scholar 

  5. N. Dunford and J. Schwartz, “Linear Operators”, Interscience, vol. I (1958) and II (1963).

    Google Scholar 

  6. C. Cercignani, “High Mach Number Flow on an Almost Specularly Reflecting Plate with Sharp Leading Edge”, Presented at the VIII Symposium on Rarefied Gas Dynamics, Stanford (1972).

    Google Scholar 

  7. A. M. Weinberg and E. P. Wigner, “The Physical Theory of Neutron Chain Reactors”, University of Chicago Press, Chicago (1958).

    Google Scholar 

  8. H. Hurwitz, M. S. Nelkin and G. J. Habetler, “Nucl. Sci. Eng.” 1, 280 (1956).

    Google Scholar 

  9. I. KuŠčcer and G. C. Summerfield, “Phys. Rev.”, 188, 1445 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Chandrasekhar, “Radiative Transfer”, Oxford University Press, Oxford (1950).

    MATH  Google Scholar 

  11. I, Marek, “Appl. Mat.” 8, 442 (1963).

    MathSciNet  MATH  Google Scholar 

  12. J. Mika, “J. Quant. Spectrosc. Radiat. Transfer” 1, 869 (1971).

    MathSciNet  Google Scholar 

  13. G. N. Watson, “Theory of Bessel Functions”, Cambridge University Press, Cambridge (1958).

    Google Scholar 

  14. I. M. Gel’fand and co-authors, “Generalized Functions”, English translation from the Russian, Academic Press, New York (1964).

    Google Scholar 

  15. C. S. Wang Chang and G. E. Uhlenbeck, “On the Propagation of Sound in Monatomic Gases”, University of Michigan Press, Project M 999, Ann. Arbor, Michigan (1952). Reprinted in “The Kinetic Theory of Gases”, Studies in Statistical Mechanics, vol. V, North-Holland, Amsterdam (1970).

    Google Scholar 

  16. C. Cercignani, “Mathematical Methods in Kinetic Theory”, Plenum Press, New York (1969).

    MATH  Google Scholar 

  17. M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions”, Dover, New York (1965).

    Google Scholar 

  18. Bateman Manuscript Project, “Higher Transcendental Functions”, McGraw-Hill Book Co., New York (1953).

    Google Scholar 

  19. H. M. Mott Smith, “A New Approach in the Kinetic Theory of Gases”, MIT Lincoln Laboratory Group Report V, 2 (1954).

    Google Scholar 

  20. Z. Alterman, K. Frankowski and C. L. Pekeris, “Astrophys. J. Suppl.”,7,291 (1962).

    Article  ADS  Google Scholar 

  21. G. Grad, in “Rarefied Gas Dynamics”, J. A. Laurmann, Ed., Vol. 1, 26, Academic Press, New York (1963).

    Google Scholar 

  22. J. R. Dorfman, “Proc. of the Nat. Acad. of Sciences”, U.S.A., 50, 804 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. I. KuŠčcer and M. M. R. Williams, “Phys. Fluids”, 10, 1922 (1967).

    Article  ADS  Google Scholar 

  24. G. M. Wing, “An Introduction to Transport Theory”, John Wiley & Sons, Inc., New York (1962).

    Google Scholar 

  25. C. Cercignani, “Phys. Fluids”, 10, 2097 (1967).

    Article  ADS  Google Scholar 

  26. L. Sirovich and J. K. Thurber, in “Rarefied Gas Dynamics” J. H. de Leeuw, Ed., Vol. I, 21 (1965).

    Google Scholar 

  27. L. Sirovich and J. K. Thurber, “J. Math. Phys.”, 10, 239 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Nicolaenko, “Dispersion Laws for Plane Wave Propagation”, in ”The Boltzmann Equation”, Edited by F. A. Grunbaum, Courant Institute, New York University, New York (1972).

    Google Scholar 

  29. M. Schechter, “J. Math. Anal, and Appl.”, 13, 205 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Gustafson and T. Weismann, “J. Math. Anal, and Appl.” 25, 121 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Bixon, J. R. Dorfman amd K. C. Mo, “Phys. Fluids”, 14, 1049 (1971).

    Article  ADS  MATH  Google Scholar 

  32. J. A. Mclennan, “Phys. Fluids”, 8, 1580 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  33. J. A. Mclennan, “Phys. Fluids”, 9, 1581 (1966).

    Article  ADS  MATH  Google Scholar 

  34. G. Scharf, “Helvetica Physica Acta”, 40, 929 (1967).

    MathSciNet  MATH  Google Scholar 

  35. K. M. Case, “The Soluble Boundary Value Problems of Transport Theory”, in “The Boltzmann Equation”, Edited by F. A. Grunbaum, Courant Institute, New York University, New York (1972).

    Google Scholar 

  36. E. P. Gross and E. A. Jackson, “Phys. Fluids”, 2, 432 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. L. Sirovich, “Phys. Fluids”, 5, 908 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  38. C. Cercignani, “Ann. Phys. (N.Y.)”, 40, 469 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  39. S. K. Loyalka and J. H. Ferziger, Phys. Fluids, 10, 1833 (1967).

    Article  ADS  MATH  Google Scholar 

  40. N. Corngold et al., “Nucl. Sci. Engng.”, 15, 13 (1963).

    Google Scholar 

  41. I. K. KuŠčcer and N. Corngold, “Phys. Rev.”, 139, A981 (1965).

    Article  ADS  Google Scholar 

  42. N. Corngold, in “Transport Theory”, R. Bellman et al., Eds., p. 79, American Mathematical Society, Providence, R.I. (1969).

    Google Scholar 

  43. M. M. R. Williams, “The Slowing Down and Thermalisation of Neutrons”, North-Holland, Amsterdam (1966).

    Google Scholar 

  44. C. Cercignani, “J. Stat. Phys.”, 1, 297 (1969).

    Article  ADS  Google Scholar 

  45. H. Lang and S. K. Loyalka, “On Variational Principles in the Kinetic Theory”, Presented at the VII Symposium on Rarefied Gas Dynamics, Pisa (1970).

    Google Scholar 

  46. H. Lang, “Acta Mechanica”, 5, 163 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  47. K. M. Case, in “Transport Theory”, R. Bellman et al., Eds., p. 17, American Mathematical Society, Providence, R.I. (1969).

    Google Scholar 

  48. R. E. Pejerls, “Proc. Camb. Phil. Soc. Math. Phys. Sci.”, 35, 610 (1939).

    Article  ADS  Google Scholar 

  49. C. Cercignani and C. D. Pagani, “Phys. Fluids”, 9, 1167 (1966).

    Article  ADS  Google Scholar 

  50. C. Cercignani and C. D. Pagani, in “Rarefied Gas Dynamics”. C. L. Brundin, Ed., Vol. I, 55, Academic Press, New York (1967).

    Google Scholar 

  51. C. Cercignani and C. D. Pagani, “Phys. Fluids”, 11, 1399 (1968).

    Article  ADS  MATH  Google Scholar 

  52. P. Bassanini, C. Cercignani and C. D. Pagani, “Int. J. Heat and Mass Transfer”, 11, 1359 (1968).

    Article  MATH  Google Scholar 

  53. Y. P. Pao, in “Rarefied Gas Dynamics”, M. Becker and M. Fiebig, Eds., Vol. I, A.6–1 DFVLR-Press, Porz-Wahn (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C. (1988). Linear Transport. In: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences, vol 67. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1039-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1039-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6995-3

  • Online ISBN: 978-1-4612-1039-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics