Skip to main content

Inner Approximation Schemes, A-Proper Operators, and the Galerkin Method

  • Chapter
Nonlinear Functional Analysis and its Applications
  • 2284 Accesses

Abstract

Along with the operator equation

(1)

, we consider the approximate equations

(2)

, which correspond to the following approximation scheme:

For what type of a linear or nonlinear mapping A is it possible to construct a solution u of the equation as a strong limit of solutions u n of the simpler finite-dimensional equations In a series of papers the author studied this problem, and the notion which evolved from these investigations is that of an A-proper mapping. It turned out that the A-properness of A is not only intimately connected with the approximation-solvability of the equation Au = b but, in view of the fact that the class of A-proper mappings is quite extensive, the theory of A-proper mappings extends and unifies earlier results concerning Galerkin type methods for linear and nonlinear operator equations with the more recent results in the theory of strongly monotone and accretive operators, operators of type (S), P γ -compact, ball-condensing and other mappings.

W. V. Petryshyn (1975)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to the Literature

  • Kantorovič, L. (1948): Functional analysis and applied mathematics. Uspekhi Mat. Nauk 3 (6), 89–185 (Russian).

    Google Scholar 

  • Petryshyn, W. (1967): Iterative construction of fixed points of contractive type mappings in Banach spaces. In: Numerical Analysis of Partial Differential Equations, pp. 307–339. C. I. M.E., Edizione Cremonese, Roma.

    Google Scholar 

  • Petryshyn, W. (1968): On the approximation-solvability of nonlinear equations. Math. Ann. 177, 156–164.

    Google Scholar 

  • Petryshyn, W. (1970): Nonlinear equations involving noncompact operators. In: Browder, F. [ed.] (1970c), pp. 206–233.

    Google Scholar 

  • Browder, F. and Gupta, C. (1969): Monotone operators and nonlinear integral equations of Hammerstein type. Bull. Amer. Math. Soc. 75, 1347–1353.

    Google Scholar 

  • Fitzpatrick, P. and Petryshyn, W. (1975): Fixed-point theorems and the fixed-point index for multivalued mappings in cones. J. London Math. Soc. 12, 75–85.

    Google Scholar 

  • Fitzpatrick, P. and Petryshyn, W. (1978): On the nonlinear eigenvalue problem Tu = XCu involving abstract and differential operators. Boll. Un. Mat. Ital. 15B, 80–107.

    Google Scholar 

  • Fitzpatrick, P. and Petryshyn, W. (1979): Some applications of A-proper mappings. Nonlinear Anal. 3, 525–532.

    Google Scholar 

  • Fitzpatrick, P. and Petryshyn, W. (1982): On connected components of solutions of nonlinear eigenvalue problems. Houston J. Math. 8, 477–500.

    Google Scholar 

  • Petryshyn, W. (1976): On the relationship of A-properness to mappings of monotone type with applications to elliptic equations. In: Swaminatha, S. [ed.] (1976): Fixed-Point Theory and Its Applications, pp. 149–174. Academic Press, New York.

    Google Scholar 

  • Petryshyn, W. (1980): Using degree theory for densely defined A-proper maps in the solvability of semilinear equations with bounded and noninvertible linear part. Nonlinear Anal. 4, 259–281.

    Google Scholar 

  • Petryshyn, W. (1980a): Solvability of linear and quasilinear elliptic boundary value problems via the A-proper mapping theory. Numer. Funct. Anal. Optim. 2, 591–635.

    Google Scholar 

  • Petryshyn, W. (1981): Variational solvability of quasilinear elliptic boundary value problems at resonance. Nonlinear Anal. 5, 1095–1108.

    Google Scholar 

  • Stummel, F. (1970): Diskrete Konvergenz linear er Operator en, I. II. Math. Ann 190, 45–92;

    Google Scholar 

  • Stummel, F. (1970): Diskrete Konvergenz linear er Operator en, I. II. Math. Z. 120, 231–264.

    Google Scholar 

  • Svarc, A. (1964): The homotopic topology of Banach spaces. Dokl. Akad. Nauk SSSR 154, 61–63 (Russian).

    Google Scholar 

  • Temam, R. (1970): Analyse numerique. Universite de France, Paris. (English edition: Reidel, Boston, MA, 1973.)

    Google Scholar 

  • Temam, R. (1977): Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam. (Third revised edition, 1984.)

    Google Scholar 

  • Konopelchenko, B. (1987): Nonlinear Integrable Equations. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Davis, P. and Hersh, R. (1981): The Mathematical Experience. Birkhauser, Boston, MA.

    Google Scholar 

  • Girault, V. and Raviart, P. (1986): Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, New York.

    Book  Google Scholar 

  • Vainikko, G. (1976): Funktionalanalysis der Diskretisierungsverfahren. Teubner, Leipzig.

    Google Scholar 

  • Vainikko, G. (1978): Approximative methods for nonlinear equations. Nonlinear Anal. 2, 647–687.

    Google Scholar 

  • Vainikko, G. (1979): Regular convergence of operators and the approximate solution of equations. Itogi nauki i tehniki, Mat. Anal. 16, 5–53 (Russian).

    Google Scholar 

  • Bonsall, F. and Duncan, J. (1971): Numerical Range of Operators of Normed Spaces and of Elements of Normed Algebras. University Press, Cambridge, England.

    Google Scholar 

  • Stone, M. (1932a): Linear Transformations in Hilbert Space. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • Zarantonello, E. (1964): The closure of the numerical range contains the spectrum. Bull. Amer. Math. Soc. 70, 781–787.

    Google Scholar 

  • Rhodius, A. (1977): Der numerische Wertebereich und die Losbarkeit linearer und nichtlinearer Operator gleichungen. Math. Nachr. 79, 343–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeidler, E. (1990). Inner Approximation Schemes, A-Proper Operators, and the Galerkin Method. In: Nonlinear Functional Analysis and its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0981-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0981-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6969-4

  • Online ISBN: 978-1-4612-0981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics