Advertisement

Convexity

  • Hallard T. Croft
  • Kenneth J. Falconer
  • Richard K. Guy
Part of the Problem Books in Mathematics book series (PBM, volume 2)

Abstract

The division of problems between this chapter and the others is fairly arbitrary. We have tried to select those problems where convexity is an essential feature. Many of the problems can be posed without requiring convexity, often resulting in a problem of a totally different character. Many of the items in the chapter on Polygons and Polytopes are also “convexity” problems, but restricted to that very special class of convex set.

Keywords

Convex Hull Convex Body Unsolved Problem Isoperimetric Inequality Constant Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. V. Benson, Euclidean Geometry and Convexity, McGraw-Hill, New York, 1966; MR 35 # 844.MATHGoogle Scholar
  2. W. Blaschke, [Bla].Google Scholar
  3. T. Bonnesen & W. Fenchel, [BF].Google Scholar
  4. H. Busemann, Convex Surfaces, Interscience, New York, 1958; MR 21 # 3900.MATHGoogle Scholar
  5. H. G. Eggleston, Convexity, Cambridge University Press, Cambridge, 1958; MR 23 # A2123.MATHCrossRefGoogle Scholar
  6. H. G. Eggleston, Problems in Euclidean Space Application of Convexity, Pergamon, New York, 1957; MR 23 # A3228.MATHGoogle Scholar
  7. L. Fejes Tóth, [Fej].Google Scholar
  8. L. Fejes Tóth, [Fej].Google Scholar
  9. H. Guggenheimer, Applicable Geometry Global and Local Convexity, Krieger, New York, 1977; MR 56 # 1198.MATHGoogle Scholar
  10. H. Hadwiger, [Had].Google Scholar
  11. H. Hadwiger, H. Debrunner & V. Klee, [HDK].Google Scholar
  12. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie,Springer, Berlin, 1957; MR 21 # 1561.CrossRefGoogle Scholar
  13. P. J. Kelly & M. L. Weiss, Geometry and Convexity, Wiley, New York, 1979; MR 80h: 52001. MATHGoogle Scholar
  14. S. R. Lay, Convex Sets and their Applications, Wiley, New York, 1982; MR 83e:52001.MATHGoogle Scholar
  15. K. Leichtweiss, Konvexe Mengen, Springer, Berlin, 1980; MR 81j:52001. CrossRefGoogle Scholar
  16. L. A. Lyusternik, Convex Figures and Polyhedra, Dover, New York, 1963, Heath, Boston, 1966; MR 19 57; 28 # 4427; 36 # 4435.MATHGoogle Scholar
  17. F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964; MR 30 # 503.MATHGoogle Scholar
  18. I. M. Yaglom & V. G. Boltyanskii, Convex Figures, Moscow, 1951; English transl. Holt, Rinehart, and Winston, New York, 1961; MR 23 #Al283.Google Scholar
  19. V. Klee, What is a convex set? Amer. Math. Monthly 78 (1971) 616–631; MR 44 # 3202.MathSciNetMATHCrossRefGoogle Scholar
  20. J. Dubois, Sur la convexité et ses applications, Ann. Sci. Math. Québec 1 (1977) 7–31; MR 58 # 24002.MATHGoogle Scholar
  21. P. M. Gruber, Seven small pearls from convexity, Math. Intelligencer 5 (1983) No. 1, 16–19; MR 85h:52001.Google Scholar
  22. P. M. Gruber, Aspects of convexity and its applications, Exposition. Math. 2 (1984) 47–83; MR 86f:52001.Google Scholar

The equichordal point problem

  1. W. Blaschke, W. Rothe & R. Weitzenböck, Aufgabe 552, Arch. Math. Phys. 27 (1917) 82.Google Scholar
  2. G. J. Butler, On The “equichordal curve” problem and a problem of packing and covering, PhD thesis, London, 1969.Google Scholar
  3. G. A. Dirac, Ovals with equichordal points, J. London Math. Soc. 27 (1952) 429–437; 28 (1953) 256; MR 14 309.MathSciNetMATHCrossRefGoogle Scholar
  4. L. Dulmage, Tangents to ovals with two equichordal points, Trans. Roy. Soc. Canada Sect. III (3) 48 (1954) 7–10; MR 16 740.MathSciNetMATHGoogle Scholar
  5. E. Ehrhart, Un ovale ¨¤ deux points isocordes? Enseign. Math. 13 (1967) 119–124; MR 37 # 823.MathSciNetMATHGoogle Scholar
  6. K. J. Falconer, On the equireciprocal point problem, Geom. Dedicata 14 (1983) 113–126; MR 84i:52004. MathSciNetMATHCrossRefGoogle Scholar
  7. M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, Tôhoku Math. J. 10 (1916) 99–103.MATHGoogle Scholar
  8. R. J. Gardner, Chord functions of convex bodies, J. London Math. Soc. (2) 36 (1987) 314–326; MR 88h:52006. MathSciNetMATHCrossRefGoogle Scholar
  9. H. Hadwiger, Ungelöste Problem 3, Elem. Math. 10 (1955) 10–19.MathSciNetGoogle Scholar
  10. A. P. Hallstrom, Equichordal and equireciprocal points, Bogasici Univ. J. Sci. 2 (1974) 83–88.Google Scholar
  11. V. Klee, Can a plane convex body have two equireciprocal points? Amer. Math. Monthly 76 (1969) 54–55, correction 78 (1971) 1114.MathSciNetCrossRefGoogle Scholar
  12. D. G. Larman & N. K. Tamvakis, A characterization of centrally symmetric convex bodies in E“, Geom. Dedicata 10 (1981) 161–176; MR 82j:52008. MathSciNetMATHCrossRefGoogle Scholar
  13. G. Michelacci, A negative answer to the equichordal problem for not too small excentricities, Bol. Un. Mat. Ital. A(7) 2 (1988) 203–211; MR 89f:52003. MathSciNetMATHGoogle Scholar
  14. C. M. Petty & J. M. Crotty, Characterization of spherical neighbourhoods, Canad. J. Math. 22 (1970) 431–435; MR 41 #2538.MathSciNetMATHCrossRefGoogle Scholar
  15. C. A. Rogers, Some problems in the geometry of convex bodies, in [DGS], 279–284; MR 84b:52001. Google Scholar
  16. C. A. Rogers, An equichordal problem, Geom. Dedicata 10 (1981) 73–78; MR 82j:52009. MathSciNetMATHCrossRefGoogle Scholar
  17. N. Spaltenstein, A family of curves with two equichordal points on a sphere, Amer. Math. Monthly 91 (1984) 423.MathSciNetMATHCrossRefGoogle Scholar
  18. W. Suss, Einbereiche mit ausgezeichneten Punkten, Inhalts, und Umfangspunkt, Tôhoku Math. J. (1) 25 (1925) 86–98.Google Scholar
  19. E. Wirsing, Zur Analytisität von Doppelspeichkurven, Arch. Math. 9 (1958) 300–307; MR 21 # 2205.MathSciNetCrossRefGoogle Scholar

Hammer’s x-ray problems

  1. H. Edelsbrunner & S. S. Skiena, Probing convex polygons with x-rays, SIAM J. Comput. 17 (1988) 870–882; MR 89i:52002. MathSciNetCrossRefGoogle Scholar
  2. K. J. Falconer, X-ray problems for point sources. Proc. London Math. Soc. (3) 46 (1983) 241–262; MR 85g:52001a. MathSciNetMATHCrossRefGoogle Scholar
  3. K. J. Falconer, Hammer’s x-ray problems and the stable manifold theorem, J. London Math. Soc. (2) 28 (1983) 149–160; MR 85g:52001b. MathSciNetMATHCrossRefGoogle Scholar
  4. R. J. Gardner, Symmetrals and x-rays of planar convex bodies, Arch. Math. (Basel) 41 (1983) 183–189; MR 85c:52007. MathSciNetMATHCrossRefGoogle Scholar
  5. R. J. Gardner, Chord functions of convex bodies, J. London Math. Soc. (2) 36 (1987) 314–326; MR 88h:52006.MathSciNetMATHCrossRefGoogle Scholar
  6. R. J. Gardner, X-rays of polygons, Discrete Combin. Geom., to appear.Google Scholar
  7. R. J. Gardner & P. McMullen, On Hammer’s x-ray problem, J. London. Math. Soc. (2) 21 (1980) 171–175; MR 81m:52009. MathSciNetMATHCrossRefGoogle Scholar
  8. O. Giering, Bestimmung von Eibereichen und Eikörpen durch Steiner-Symmetrisierungen, Bayer. Akad. Wiss. Math.-Natur Kl. S.-B. (1962) 225–253; MR 30 # 3410.Google Scholar
  9. P. C. Hammer, Problem 2, [Kle], 498–499.Google Scholar
  10. D. Kölzow, A. Kuba & A. Volvic, An algorithm for reconstructing convex bodies from their projections, Discrete. Comp. Geom. 4 (1989) 205–237.MATHCrossRefGoogle Scholar
  11. M. Longinetti, Some questions of stability in the reconstruction of plane convex sets from projections, Inverse Problems 1(1985) 87–97; MR 86f:52006. Google Scholar
  12. G. Mägerl & A. Volviv, On the well-posedness of the Hammer x-ray problem, Ann. Mat. Pura Appl. 144 (1986) 173–182; MR 89a:52006. MathSciNetMATHCrossRefGoogle Scholar
  13. L. A. Shepp (ed.), Computed tomography, Proc. Symp. Applied Math. 27, Amer. Math. Soc., Providence, 1983; MR 846:92012.Google Scholar
  14. A. Volviv, A new proof of the Giering theorem, Rend. Circ. Math. Palermo (2) 8 (1985) 281–295; MR 88d:52002.Google Scholar
  15. A. Volviv, A three-point solution to Hammer’s x-ray problem, J. London Math. Soc. (2) 34 (1986) 349–359; MR 87j:52005. MathSciNetGoogle Scholar
  16. A. Volviv & T. Zamfirescu, Ghosts are scarce, J. London Math. Soc. (2) 40 (1989) 171–178.MathSciNetGoogle Scholar

Concurrent normals

  1. N. Deo & M. S. Klamkin, Existence of four concurrent normals to a smooth closed curve, Amer. Math. Monthly 77 (1970) 1083–1084; MR 42 #6718.MathSciNetMATHCrossRefGoogle Scholar
  2. H. W. Guggenheimer, Does there exist a “four normals triangle”? Amer. Math. Monthly 77 (1970) 177–179.MathSciNetCrossRefGoogle Scholar
  3. E. Heil, Concurrent normals and critical points under weak smoothness assumptions, [GLMP] 170–178; MR 87d:52006.Google Scholar
  4. E. Heil, Existenz eines 6-Normalenpunktes in einem konvexen Körper, Arch. Math. (Basel) 32 (1979) 412–416, correction 33 (1979) 496; MR 80j:52002. MathSciNetMATHCrossRefGoogle Scholar
  5. L. A. Lyusternik & L. G. Schnirelmann, Méthodes Topologiques dans les Problómes Variationels,Hermann, Paris, 1934.Google Scholar
  6. T. Zamfirescu, Intersecting diameters in convex bodies, [RZ], 311–316; MR 87a:52013. Google Scholar

Billiard ball trajectories

  1. T. Zamfirescu, Points on infinitely many normals to convex surfaces, J. Reine Angew. Math. 350 (1984) 183–187; MR 85d:52003.MathSciNetMATHGoogle Scholar
  2. C. Boldrighini, M. Keane & F. Marchetti, Billiards in polygons, Ann. Probab. 6 (1978) 532–540; MR 58 # 31007b.MathSciNetMATHCrossRefGoogle Scholar
  3. L. A. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Commun. Math. Phys. 65 (1979) 295–312; MR 80h:58037. MathSciNetMATHCrossRefGoogle Scholar
  4. H. T. Croft & H. P. F. Swinnerton-Dyer, On the Steinhaus billiard table problemProc. Cambridge Philos. Soc. 59 (1963) 37–41; MR 26 # 2925.MathSciNetMATHCrossRefGoogle Scholar
  5. D. W. De Temple & J. M. Robertson, A billiard path characterization of regular polygons, Math. Mag. 54 (1981) 73-75; MR 84g:52002. MathSciNetCrossRefGoogle Scholar
  6. D. W. De Temple & J. M. Robertson, Convex curves with periodic billiard polygons, Math. Mag. 58 (1985) 40–42.MathSciNetMATHCrossRefGoogle Scholar
  7. M. Gardner, Martin Gardner’s Sixth Book of Mathematical Puzzles and Diversions from the Scientific American, University of Chicago Press, 1971, Chicago, 29–38.Google Scholar
  8. W. S. Gilbert, The Mikado, Act II “My object all sublime.”Google Scholar
  9. E. Gutkin, Billiards in polygons, Physica D 19 (1986) 311–333.MathSciNetMATHCrossRefGoogle Scholar
  10. B. Halpern, Strange billiard tables, Trans. Amer. Math. Soc. 232 (1977) 297–305; MR 56 # 9595.MathSciNetMATHCrossRefGoogle Scholar
  11. G. H. Hardy & E. M. Wright, Introduction to the Theory of Numbers, 4th ed, Oxford University Press, Oxford, 1960, 373.MATHGoogle Scholar
  12. N. Innami, Convex curves whose points are vertices of billiard triangles, Kodai Math. J. 11 (1988) 17–24; MR 89d:52004.MathSciNetMATHCrossRefGoogle Scholar
  13. S. Kerckhoff, H. Masur & J. Smillie, A rational billiard flow is uniquely ergodic in almost every direction, Bull. Amer. Math. Soc. 13 (1985) 141–142; MR 86j:58080. MathSciNetMATHCrossRefGoogle Scholar
  14. N. H. Kuiper, Double normals of convex bodies, Israel J. Math. 2 (1964) 71–80; MR 30 # 4191.MathSciNetMATHCrossRefGoogle Scholar
  15. H. Masur, Rational billiards have periodic orbits, to appear.Google Scholar
  16. H. Poritsky, The billiard ball problem on a table with a convex boundary¡ªAn illustrative dynamical problem, Ann. Math. (2) 51(1950) 446–470; MR 11 373.MathSciNetMATHCrossRefGoogle Scholar
  17. M. Robnik & M. V. Berry, Classical billiards in magnetic fields, J. Phys. A 18 (1985) 1361–1378; MR 86j:58101.MathSciNetMATHCrossRefGoogle Scholar
  18. R. Sine, A characterization of the ball in R 3,Amer. Math. Monthly 83 (1976) 260–261; MR 53 # 1404.MathSciNetMATHCrossRefGoogle Scholar
  19. R. Sine & V. Kreinovic, Remarks on billiards, Amer. Math. Monthly 86 (1979) 204–206; MR 80k:28021. MathSciNetCrossRefMATHGoogle Scholar
  20. H. Steinhaus, Problems P.175, P.176, P.181, Colloq. Math. 4 (1957) 243, 262.MathSciNetGoogle Scholar
  21. P. H. Turner, Convex caustics for billiards in R 2 and R 3, in [KB], 85–106; MR 83i:52016.Google Scholar
  22. A. N. Zemlyakov & A. B. Katok, Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975) 291–300 [translated in Math. Notes 18 (1975) 760–764]; MR 53 # 3267.MathSciNetMATHGoogle Scholar

Illumination problems

  1. R. K. Guy & V. Klee, Monthly research problems, Amer. Math. Monthly 78 (1971) 1114.MathSciNetCrossRefGoogle Scholar
  2. V. Klee, Some unsolved problems in plane geometry, Math. Mag. 52 (1979) 131–145; MR 80m:52006. MathSciNetMATHCrossRefGoogle Scholar
  3. V. Klee, Is every polygonal region illuminable from some point? Amer. Math. Monthly 76 (1969) 180.MathSciNetCrossRefGoogle Scholar
  4. L. Penrose & R. Penrose, Puzzles for Christmas; New Scientist, 25 Dec. 1958, 1580–1581.Google Scholar
  5. J. Rauch, Illuminations of bounded domains, Amer. Math. Monthly 85 (1978) 359–361.MathSciNetMATHCrossRefGoogle Scholar
  6. W. Wunderlich, Ein Spiegelproblem, Monatsch. Math. 53 (1949) 63–72.MathSciNetMATHCrossRefGoogle Scholar
  7. W. Wunderlich, Ungelöste Probleme 35, Elem. Math. 15 (1960) 37–39.MathSciNetGoogle Scholar

The floating body problem

  1. H. Auerbach, Sur un problóme de M. Ulam concernant l’équilibre des corps flottantsStudia Math. 7 (1938) 121–142.Google Scholar
  2. K. J. Falconer, Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly 90 (1983) 690–693; MR 85f:52012.MathSciNetMATHCrossRefGoogle Scholar
  3. R. D. Mauldin, [Mau], Problem 19.Google Scholar
  4. L. Montejano, On a problem of Ulam concerning a characterization of the sphere, Studies Appl. Math. 53 (1974) 243–248; MR 50 #8296.MathSciNetMATHGoogle Scholar
  5. R. Schneider, Functional equations connected with rotations and their geometric applications, L’Enseign. Math. 16 (1970) 297–305; MR 44 # 4642.MATHGoogle Scholar
  6. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960, p. 38; MR 22 # 10884.MATHGoogle Scholar

Division of convex bodies by lines or planes through a point

  1. B. Grünbaum, Measures of symmetry for convex sets, in [Kle], 233–270; MR 27 # 6187.Google Scholar
  2. B. H. Neumann, On an invariant of plane regions and mass distributions, J. London Math. Soc. 20 (1945) 226–237; MR 8 170.MathSciNetMATHCrossRefGoogle Scholar

Sections through the centroid of a convex body

  1. J. G. Ceder, On a problem of Grünbaum, Proc. Amer. Math. Soc. 16 (1965) 188–189; MR 30 #3413. MathSciNetMATHGoogle Scholar
  2. G. D. Chakerian & S. K. Stein, Bisected chords of a convex body, Arch. Math. (Basel) 17 (1966) 561–565; MR 34 # 6635.MathSciNetMATHCrossRefGoogle Scholar
  3. B. Grünbaum, On some properties of convex sets, Colloq. Math. 8 (1961) 39–42; MR 23 # A3508.MathSciNetMATHGoogle Scholar
  4. B. Grünbaum, Measures of symmetry for convex sets, in [Kle], 233–270; MR 27 # 6187.Google Scholar
  5. C. Loewner, Problem 28, in [Fen], 323.Google Scholar
  6. H. Steinhaus, Quelques applications des principles topologiques ¨¤ la géométrie des corps convexes, Fund. Math. 41 (1955) 284–290; MR 16 849.MathSciNetMATHGoogle Scholar

Sections of centro-symmetric convex bodies

  1. K. Ball, Cube slicing in 08“, Proc. Amer. Math. Soc. 97 (1986) 465–473; MR 87g:60018. MathSciNetMATHGoogle Scholar
  2. K. Ball, Some remarks on the geometry of convex sets, in Geometric Aspects of Functional Analysis, Springer Lecture Notes in Math, 1317, Springer, Berlin, 1988, 224–231; MR 89h:52009. CrossRefGoogle Scholar
  3. J. Bourgain, On the Busemann¡ªPetty problem for perturbations of the ball, Geom. Func. Analysis 1(1991) 1–13.MathSciNetMATHCrossRefGoogle Scholar
  4. H. Busemann, Volumes and areas of cross sections, Amer. Math. Monthly 67 (1960) 248–250, correction 67 (1960) 671; MR 22 # 11313, 23 # A3826.MathSciNetMATHCrossRefGoogle Scholar
  5. H. Busemann & C. M. Petty, Problem 1, Problems on convex bodies, Math. Scand. 4 (1956) 88–94; MR 18 922.MathSciNetMATHGoogle Scholar
  6. I. Fáry & E. Makai, Research problems, Period. Math. Hungar. 14 (1983) 111–114.MathSciNetMATHCrossRefGoogle Scholar
  7. I. Fáry & E. Makai, Problem, in [BF], 694–695.Google Scholar
  8. A. A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of convex bodies, Mathematika 37 (1990) 239–244.MathSciNetMATHCrossRefGoogle Scholar
  9. M. Gietz, A note on a problem of Busemann, Math. Scand. 25 (1969) 145–148; MR 41 # 7534.MathSciNetGoogle Scholar
  10. E. L. Grinberg & I. Riven, Infinitesimal aspects of the Busemann¡ªPetty problem, J. London Math. Soc., to appear.Google Scholar
  11. D. G. Larman & C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975)164–175; MR 52 # 11737.MathSciNetCrossRefGoogle Scholar
  12. R. Schneider, Zu einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z. 101 (1967) 71–82; MR 36 #2059.MathSciNetMATHCrossRefGoogle Scholar

What can you tell about a convex body from its shadows?

  1. W. Blaschke, [Bla], 140.Google Scholar
  2. T. Bonnesen, Om Minkowski’s uligheder fur konvexer legemer, Mat. Tidsskr. B (1926) 80.Google Scholar
  3. T. Bonnesen & W. Fenchel, [Bon Fe], 140.Google Scholar
  4. G. D. Chakerian, Is a body spherical if all its projections have the same I.Q.? Amer. Math. Monthly 77 (1970) 989–992.MathSciNetCrossRefGoogle Scholar
  5. W. J. Firey, Blaschke sum of convex bodies and mixed bodies, in [Fen], 94–101; MR 36 # 3231.Google Scholar

What can you tell about a convex body from its sections?

  1. T. Bonnesen & W. Fenchel, [Bon Fe], 140.Google Scholar
  2. K. Falconer, Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly 90 (1983) 690-693; MR 85f:52012. MathSciNetMATHCrossRefGoogle Scholar
  3. W. Fenchel, To problem 22, [Fen], 322.Google Scholar
  4. P. Funk, Über Flächen mit lauter geschlossenen geodätischer Linien, Math. Ann. 74 (1913) 278–300.MathSciNetMATHCrossRefGoogle Scholar
  5. V. Klee, Is a body spherical if all its HA measurements are constant? Amer. Math. Monthly 76 (1969) 539–542.MathSciNetCrossRefGoogle Scholar
  6. V. Klee, Problem 22, [Fen], 321.Google Scholar
  7. I. M. Lifschitz & A. V. Pogorelov, On the determination of Fermi surfaces and electron velocities in metals by the oscillation of magnetic susceptibility, Dokl. Akad. Nauk SSSR 96 (1954) 1143–1145.Google Scholar
  8. A. R. Mackintosh, The Fermi surface of metals, Scientific American, 209 no. 1. (July 1963), 110–120.CrossRefGoogle Scholar
  9. D. Shoenberg, The de Haas von Alphen effect, in The Fermi Surface, W. A. Harrison and M. B. Webb (eds.), Wiley, New York, 1960, 74–83.Google Scholar
  10. J. Zaks, Nonspherical bodies with constant HA measurements exist, Amer. Math. Monthly 78 (1971) 513–516.MathSciNetMATHCrossRefGoogle Scholar

Overlapping convex bodies

  1. J. W. Fickett, Overlapping congruent convex bodies, Amer. Math. Monthly 87 (1980) 814–815.MathSciNetMATHCrossRefGoogle Scholar

Intersections of congruent surfaces

  1. H. Hadwiger, Ungeloste Probleme 50, Elem. Math. 23 (1968) 90.Google Scholar
  2. T. Bonnesen, Om Minkowski’s uligheder for konvekse legemer, Mat. Tidsskr 8 (1926) 80.Google Scholar
  3. J. J. Schäffer, Problem 11, Durham Symposium on convexity, Bull. London Math. Soc. 8 (1976) 28–33.Google Scholar

Rotating polyhedra

  1. G. D. Chakerian & H. Groemer, Convex bodies of constant width, in [GW], 49–96; MR 85f:52001.Google Scholar
  2. H. T. Croft, Some geometrical thoughts, Math. Gaz. 49 (1965) 45–49.MATHCrossRefGoogle Scholar
  3. H. T. Croft, Convex curves in which a triangle can rotate, Math. Proc. Cambridge Philos. Soc. 88 (1980) 385–393; MR 82c:52003.MathSciNetMATHCrossRefGoogle Scholar
  4. M. Goldberg, Rotors in polygons and polyhedra, Math. Comput. 14 (1960) 229–239; MR 22 # 5934.MathSciNetMATHCrossRefGoogle Scholar
  5. E. Meissner, Uber die durch reguläre Polyeder nicht stützbaren Körper, Vier. Natur Ges. Zürich 63 (1918) 544–551.Google Scholar
  6. R. Schneider, Gleitkörper in konvexen Polytopen, J. Reine Angew. Math. 248 (1971) 193–220; MR 43 # 5411.MathSciNetMATHGoogle Scholar
  7. I. M. Yaglom & V. G. Boltyanskii, Convex Figures, Holt, Rinehart, and Winston, New York, 1961; MR 23A # 1283.MATHGoogle Scholar

Inscribed and circumscribed centro-symmetric bodies

  1. A. S. Besicovitch, Asymmetry of a plane convex set with respect to its centroid, Pacific J. Math. 8 (1958) 335–337.MathSciNetCrossRefGoogle Scholar
  2. A. S. Besicovitch, Measures of asymmetry of convex curves, II: Curves of constant width, J. London Math. Soc. 26 (1951) 81–93; MR 12 850.MathSciNetMATHCrossRefGoogle Scholar
  3. A. Bielecki & K. Radziszewski, Sur les parallélépipódes inscrits dans les corps convexes, Ann. Univ. Mariae Curie-Sklodowska Sect. A 8 (1954) 97–100; MR 18 412.MathSciNetGoogle Scholar
  4. G. D. Chakerian, Sets of constant width, Pacific J. Math. 19 (1966) 13–21; MR 34 # 4986.MathSciNetMATHCrossRefGoogle Scholar
  5. G. D. Chakerian & S. K. Stein, On measures of symmetry of convex bodies, Canad. J. Math. 17 (1965) 497–504; MR 31 # 1612.MathSciNetMATHCrossRefGoogle Scholar
  6. G. D. Chakerian & S. K. Stein, On the symmetry of convex bodies, Bull. Amer. Math. Soc. 70 (1964) 594–595; MR 29 # 517.MathSciNetMATHCrossRefGoogle Scholar
  7. H. G. Eggleston, Measures of asymmetry of convex curves of constant width and restricted radii of curvature, Quart. J. Math. Oxford (2) 3 (1952) 63–72; MR 13 768.MathSciNetMATHCrossRefGoogle Scholar
  8. E. Ehrhart, Propriétés arithmo-géométriques des ovales, C. R. Acad. Sci. Paris 241 (1955) 274–276; MR 17 350.MathSciNetMATHGoogle Scholar
  9. T. Estermann, Ueber den Vektorenbereich eines konvexen Körpers, Math. Z. 28 (1928) 471–475.MathSciNetMATHCrossRefGoogle Scholar
  10. I. Fáry, Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France 78 (1950) 152–161; MR 12 526.MathSciNetMATHGoogle Scholar
  11. B. Grünbaum, Measures of symmetry for convex sets, in [Kle], 233–270; MR 27 # 6187.Google Scholar
  12. B. N. Kozinec, On the area of the kernel of an oval, Leningrad. Gos. Univ. Ui. Zap. Ser. Math. Nauk. 1958, 83–89.Google Scholar
  13. F. W. Levi, Über zwei Sätze von Herrn Besicovitch, Arch. Math. 3 (1952) 125–129; MR 14 309.MathSciNetMATHCrossRefGoogle Scholar
  14. B. M. Stewart, Asymmetry of a plane convex set with respect to its centroid, Pacific J. Math. 8 (1958) 335–337; MR 20 #4238.MathSciNetMATHCrossRefGoogle Scholar

Inscribed affine copies of convex bodies

  1. E. Asplund, Comparison between plane symmetric convex bodies and parallelograms, Math. Scand. 8 (1960) 171–180; MR 23 #A2796.MathSciNetMATHGoogle Scholar
  2. F. Behrend, Über einige Affininvorienten, Math. Annalen 113 (1937) 713–747.MathSciNetMATHCrossRefGoogle Scholar
  3. F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays presented to R. Courant, New York, 1948, 187–204.Google Scholar
  4. R. H. K. Thomas, Pairs of convex bodies, J. London Math. Soc. (2) 19 (1979) 144–146; MR 80m:52002. MathSciNetMATHCrossRefGoogle Scholar

Isoperimetric inequalities and extremal problems

  1. C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston and London, 1980; MR 81e:35095.MATHGoogle Scholar
  2. C. Bandle, Isoperimetric inequalities, in [GW], 30–48; MR 85f:52029.Google Scholar
  3. R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978)1182–1238; MR 58 # 18161.MathSciNetMATHCrossRefGoogle Scholar
  4. R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979) 1–29; MR 80h:52013.MathSciNetMATHCrossRefGoogle Scholar
  5. L. E. Payne, Isoperimetric inequalities and their applications, SIAM Review 9 (1967) 453–488; MR 36 # 2058.MathSciNetMATHCrossRefGoogle Scholar
  6. C. M. Petty, Isoperimetric problems, in [Kay], 26–41; MR 50 # 14499.Google Scholar
  7. G. Pólya & G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951; MR 13 270.MATHGoogle Scholar

Volume against width

  1. W. J. Firey, Lower bounds for volumes of convex bodies, Arch. Math. (Basel) 16 (1965) 69–74; MR 31 # 5152.MathSciNetMATHCrossRefGoogle Scholar
  2. E. Heil, Comment on Problem 26, [TW], 261.Google Scholar
  3. J. Pál, Ein minimumproblem für Ovale, Math. Ann. 83 (1921) 311–319.MathSciNetMATHCrossRefGoogle Scholar

Extremal problems for elongated sets

  1. H. Bieri, Problems 5 and 6 in [TW], 256.Google Scholar
  2. M. L. Weiss, Convex figures with given area and circumference, and maximal or minimal diameter, Normat 32 (1984) 128–134; MR 86b:52006.MathSciNetMATHGoogle Scholar

Dido#x2019;s Problem

  1. A. M. Amilibia & S. S. Gomis, A Dido problem for domains in R 2 with a given inradius, Geom. Dedicata 34 (1990) 113–124.MathSciNetMATHCrossRefGoogle Scholar
  2. A. Bezdek & K. Bezdek, On a discrete Dido-type question, Elem. Math. 44 (1989) 92–100; MR 90j:52013.MathSciNetMATHGoogle Scholar
  3. K. Bezdek, On a Dido-type question, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 29 (1986) 241–244; MR 88h:52017.MathSciNetMATHGoogle Scholar
  4. L. Fejes Tóth, Über das Didosche Problem, Elem. Math. 23 (1968) 97–101; MR 38 # 5114.MathSciNetMATHGoogle Scholar
  5. L. Fejes Tóth, On the Dido problem of three discs, Mat. Lapok 19 (1968) 9–12; MR 41 # 924.MathSciNetMATHGoogle Scholar
  6. L. Fejes Tóth & A. Heppes, Regions enclosed by convex domains, Studia Sci. Math. Hungar. 1 (1966) 413–417; MR 34 # 3432.MathSciNetMATHGoogle Scholar

Blaschke's Problem

  1. W. Blaschke, Eine Frage über konvexe Körper, Jahresher. Deutsch. Math. Verein 25 (1916) 121–125.MATHGoogle Scholar
  2. H. Bieri, über Konvexe Extremalkörper, Experientia 5 (1949) 355; MR 11 200.MathSciNetCrossRefGoogle Scholar
  3. H. Bieri, Mitteilung zum Problem eines konvexen Extremalkörpers, Arch. Math. (Basel) 1 (1949) 462–463; MR 11 127.MathSciNetMATHCrossRefGoogle Scholar
  4. H. Groemer, Eine neue Ungleichung für konvexe Körper, Math. Z. 86 (1985) 361–364.MathSciNetCrossRefGoogle Scholar
  5. H. Hadwiger, P. Glur & H. Bieri, Die symmetrische Kugelzone als extremale Rotationskörper, Experientia 4 (1948) 304–305; MR 10 141.CrossRefGoogle Scholar
  6. H. Hadwiger, Elementare Studie über konvexe Rotationskörper, Math. Nachr. 2 (1949) 114–123; MR 11 127.MathSciNetMATHCrossRefGoogle Scholar
  7. H. Hadwiger, [Had], Section 28.Google Scholar
  8. H. Hadwiger, Notiz für fehlenden Ungleichung in der Theorie der konvexen Körper, Elem. Math. 3 (1948) 112–113; MR 10 395.MathSciNetGoogle Scholar
  9. J. R. Sangwine-Yager, The missing boundary of the Blaschke diagram, Amer. Math. Monthly 96 (1989) 233–237.MathSciNetMATHCrossRefGoogle Scholar

Minimal bodies of constant width

  1. T. Bonnesen & W. Fenchel, [BF].Google Scholar
  2. G. D. Chakerian, Sets of constant width, Pacific J. Math. 19 (1966) 13–21; MR 34 # 4986.MathSciNetMATHCrossRefGoogle Scholar
  3. G. D. Chakerian & H. Groemer, Convex bodies of constant width, in [GW], 49–96; MR 85f:52001. Google Scholar
  4. W. J. Firey, Lower bounds for volumes of convex bodies, Arch. Math. (Basel) 16 (1965) 69–74; MR 31 # 5152.MathSciNetMATHCrossRefGoogle Scholar
  5. E. Meissner, Über Punktmengen konstanter Breite, Vjsch. Naturforsch. Ges. Zürich 56 (1911) 42–50.Google Scholar
  6. E. Meissner, Drei Gipsmodelle von Flächen konstanter Breite, Z. Math. Phys. 60 (1912) 92–94.Google Scholar
  7. O. Schramm, On the volume of sets having constant width, Israel J. Math. 63 (1988) 178–182.MathSciNetMATHCrossRefGoogle Scholar

Constrained isoperimetric problems

  1. A. S. Besicovitch, Variants of a classical isoperimetric problem, Quart. J. Math. Oxford (2) 3 (1952) 42–49; MR 13, 768.MathSciNetMATHCrossRefGoogle Scholar
  2. H. T. Croft, Cushions, cigars and diamonds: an area-perimeter problem for symmetric ovals, Math. Proc. Cambridge Philos. Soc. 85 (1979) 1–16; MR 80e:52001. MathSciNetMATHCrossRefGoogle Scholar
  3. R. F. DeMar, A simple approach to isoperimetric problems in the plane, Math. Mag. 48 (1975) 1–12.MathSciNetMATHCrossRefGoogle Scholar
  4. A. D. Garvin, A note on DeMar’s “A simple approach to isoperimetric problems in the plane” and an epilogue, Math. Mag. 48 (1975) 219–221.MathSciNetMATHCrossRefGoogle Scholar
  5. B. Herz & J. Kaapke, Ein isoperimetrisches Problem mit Nebenbedingung, Elem. Math. 28 (1973) 63–65.MathSciNetMATHGoogle Scholar
  6. T.-P. Lin, Maximum area under constraint, Math. Mag. 50 (1977) 32–34.MathSciNetMATHCrossRefGoogle Scholar
  7. D. Singmaster & D. J. Souppouris, A constrained isoperimetric problem, Math. Proc. Cambridge Philos. Soc. 83 (1978) 73–82: MR 81i:52011. MathSciNetMATHCrossRefGoogle Scholar
  8. J. Steiner, Sur le maximum et le minimum des figures dans le plan sur la sphóre et dans l’espaces en général, J. Math. Pures Appl. 6 (1841) 105–170.Google Scholar

Is a body fairly round if all its sections are?

  1. G. D. Chakerian, Is a body spherical if all its projections have the same I.Q.? Amer. Math. Monthly 77 (1970) 989–992.MathSciNetCrossRefGoogle Scholar
  2. A. Dvoretsky, Some near-sphericity results, in [KIe], 203–210; MR 28 #1533.Google Scholar
  3. H. Groemer, On plane sections and projections of convex sets, Canad. J. Math 21 (1969) 1331–1337; MR 41 #2533.MathSciNetMATHCrossRefGoogle Scholar
  4. H. Steinhaus, P232, Colloq. Math. 5 (1958) 264.Google Scholar

How far apart can various centers be?

  1. H. G. Eggleston, An extremal problem concerning the centroid of a plane convex set, [Fen], 68.Google Scholar
  2. H. G. Eggleston, The centroid and circumcentre of a plane convex set, Compositio Math. 21 (1969) 125–136; MR 39 #6173.MathSciNetMATHGoogle Scholar
  3. J. F. Pál, Om convekse figures tyndepunkter, Mat. Tidsskrift 8 (1937) 101–103.Google Scholar
  4. P. R. Scott, Centre of gravity and circumcentre of a convex body in the plane, Quart. J. Math. Oxford Ser. (2) 40 (1989) 111–117; MR 89m:52017.MathSciNetMATHCrossRefGoogle Scholar

Dividing up a piece of land by a short fence

  1. J. Bokowski, Ungleichungen für den Inhalt von Trennflächen, Arch. Math. (Basel) 34 (1980) 84–89; MR 81f:52018.MathSciNetMATHCrossRefGoogle Scholar
  2. J. Bokowski & E. Sperner, Jr., Zerlegung konvexer Körper durch minimale Trenn-flächen, J. reine angew. Math. 311/312 (1979) 80–100; MR 81b: 52010.MathSciNetGoogle Scholar
  3. H. G. Eggleston, The maximal length of chords bisecting the area or perimeter length of plane convex sets, J. London Math. Soc. 36 (1961) 122–128; MR 23 #A2795.MathSciNetMATHCrossRefGoogle Scholar
  4. L. M. Gysin, Inequalities for the product of the volumes of a partition determined in a convex body by a surface, Rend. Circ. Mat. Palermo (2) 35 (1986) 420–428; MR 89f:52029. MathSciNetMATHCrossRefGoogle Scholar
  5. H. Hadwiger, Über die Flächeninhalte ebener Schnitte konvexer Körper, Elem. Math. 30 (1975) 97–102; MR 52 #6578. MathSciNetMATHGoogle Scholar
  6. M. Iseli, Über die Flächeninhalte ebener Schnitte konvexer Körper, Elem. Math. 33 (1978) 129–134; MR 80c:52010. MathSciNetMATHGoogle Scholar
  7. G. Pólya, Aufgabe 283, Elem. Math. 13 (1958) 40–41.Google Scholar
  8. K. Radziszewski, Sur les cordes qui partagent l’aire d’un ovale en 2 parties égales, Ann. Univ. Mariae Curie-Sklodowska Sect. A 8 (1954) 89–92; MR 18 330.MathSciNetGoogle Scholar
  9. K. Radziszewski, Sur les cordes qui partagent le périmótre d’un ovale en 2 parties égales, Ann. Univ. Mariae Curie-Sklodowska Sect. A 8 (1954) 93–96; MR 18 330.MathSciNetGoogle Scholar
  10. L. A. Santaló, An inequality between the parts into which a convex body is divided by a plane section, Rend. Circ. Mat. Palermo (2) 32 (1983) 124–130; MR 85c:52020. MathSciNetMATHCrossRefGoogle Scholar

Midpoints of diameters of sets of constant width

  1. Z. A. Melzak, Problems connected with convexity, Problem 19, Canad. Math. Bull. 8 (1965) 565–573; MR 33 #4781. MathSciNetMATHCrossRefGoogle Scholar
  2. Z. A. Melzak, More problems connected with convexity, Problem 7, Canad. Math. Bull. 11 (1968) 482–494; MR 38 #3767. Google Scholar

Largest convex hull of an arc of given length

  1. A. Adhikari & J. Pitman, The shortest planar arc of width 1, Amer. Math. Monthly 96 (1989) 309–327.MathSciNetMATHCrossRefGoogle Scholar
  2. T. Bonnesen & W. Fenchel, [BonFe], 111.Google Scholar
  3. E. Egerváry, On the smallest convex cover of a simple arc of space-curve, Publ. Math. Debrecen 1(1949) 65–70; MR 12 46.MathSciNetMATHGoogle Scholar
  4. Z. A. Melzak, The isoperimetric problem of the convex hull of a closed space-curve, Proc. Amer. Math. Soc. 11 (1960) 265–274; MR 22 #7058.MathSciNetMATHGoogle Scholar
  5. Z. A. Melzak, Numerical evaluation of an isoperimetric constant, Math. Comput. 22 (1968) 188–190; MR 36 # 7023.MathSciNetMATHCrossRefGoogle Scholar
  6. P. A. P. Moran, On a problem of S. Ulam, J. London Math. Soc. 21 (1946) 175–179; MR 8 597.MathSciNetMATHCrossRefGoogle Scholar
  7. I. J. Schoenberg, An isoperimetric inequality for closed curves in even-dimensional Euclidean spaces, Acta Math. 91 (1954) 143–164; MR 16 508.MathSciNetMATHCrossRefGoogle Scholar

Roads on planets

  1. Z. A. Melzak, Problems connected with convexity, Problem 39, Canad. Math. Bull. 8 (1965) 565–573; MR 33 #4781.MathSciNetMATHCrossRefGoogle Scholar

The shortest curve cutting all the lines through a disk

  1. H. T. Croft, Curves intersecting certain sets of great circles on the sphere, J. London Math. Soc. (2) 1 (1969) 461–469; MR 40 # 865.MathSciNetMATHCrossRefGoogle Scholar
  2. H. G. Eggleston, The maximal inradius of the convex cover of a plane connected set of given length, Proc. London Math. Soc. (3) 45 (1982) 456-478; MR 84e:52004. MathSciNetMATHCrossRefGoogle Scholar
  3. V. Faber & J. Mycielski, The shortest curve that meets all the lines that meet a convex body, Amer. Math. Monthly 93 (1986) 796–801; MR 87m:52017.MathSciNetMATHCrossRefGoogle Scholar
  4. V. Faber, J. Mycielski & P. Pedersen, On the shortest curve which meets all the lines which meet a circle, Ann. Polon. Math. 44 (1984) 249–266; MR 876:52023. MathSciNetMATHGoogle Scholar
  5. H. Joris, Le chasseur perdu dans la for¨ºt, Elem. Math. 35 (1980) 1-14; MR 81d:52001. MathSciNetMATHGoogle Scholar
  6. C. S. Ogilvy, Tomorrow’s Math, Oxford University Press, Oxford, 1962, 23–24.MATHGoogle Scholar
  7. R. Schnieder & J. A. Wieacker, Einschliessung ebener Kurven, Elem. Math. 40 (1985) 98–99; MR 86m:52014.MathSciNetGoogle Scholar

Cones based on convex sets

  1. L. Danzer, To Problem 17, [Fen], 318.Google Scholar
  2. P. Erdös & I. Vincze, On the approximation of convex, closed plane curves, Mat. Lapok. 9 (1958) 19–36; MR 20 # 6070.MathSciNetMATHGoogle Scholar
  3. P. Erdös & I. Vincze, On the approximation of convex, closed plane curves by multifocal ellipses, J. Appl. Prob. (Special Vol.) 19 (1982) 89–96; MR 83a:52006. CrossRefGoogle Scholar
  4. P. C. Hammer, Problem 13, [Fen], 316.Google Scholar
  5. P. C. Hammer, Problem 17, [Fen], 318.Google Scholar
  6. P. Hartman & F. A. Valentine, On generalized ellipses, Duke Math. J. 26 (1959) 373–385; MR 21 # 6566.MathSciNetMATHCrossRefGoogle Scholar
  7. E. Weissfield, Sur le point pour lequel la somme des distances de n points donnés est minimum, Tôhoku Math. J. 43 (1937) 355–386.Google Scholar
  8. T. Zamfirescu, Elipsoïdes et hyperboloïdes géneralisés, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984) 314–324; MR 89b:52005.Google Scholar

Conic sections through five points

  1. L. M. Blumenthal, Theory and Applications of Distance Geometry, 2nd ed., Chelsea, New York, 1970, 153; MR 42 # 3678.MATHGoogle Scholar
  2. L. M. Kelly, Covering problems, Math. Mag. 19 (1944) 123–130; MR 6 183.MATHGoogle Scholar
  3. R. C. Olson, On the six conics problem, Discrete Math. 10 (1974) 279–300; MR 50 # 3092.MathSciNetCrossRefGoogle Scholar
  4. R. C. Olson, Solutions of elementary problems, Amer. Math. Monthly 83 (1976) 285.Google Scholar
  5. D. Pedoe, Thinking geometrically, Amer. Math. Monthly 77 (1970) 711–721.MathSciNetMATHCrossRefGoogle Scholar
  6. J. J. Schäffer, Ungelöste Problem 43, Elem. Math. 17 (1962) 65.Google Scholar
  7. J. J. Seidel & J. van Vollenhoven, Zum Probleme 43, Elem. Math. 17 (1962) 85.Google Scholar

The shape of worn stones

  1. W. J. Firey, Shapes of worn stones, Mathematika 21 (1974) 1–11; MR 50 # 14487.MathSciNetMATHCrossRefGoogle Scholar
  2. C. A. Rogers, Problem 4, Bull. London Math. Soc. 8 (1976) 29.Google Scholar

Geodesics

  1. W. W. Armstrong, Curves on surfaces of constant width, Canad. Math. Bull. 9 (1966) 15–22; MR 33 # 6511.MathSciNetMATHCrossRefGoogle Scholar
  2. W. Blaschke, Einführung in die Dii ferentialgeometrie, Springer-Verlag, Berlin, 1950; MR 13 274.CrossRefGoogle Scholar
  3. G. R. Burton, Convex surfaces whose geodesics are planar, Monatsh. Math. 84 (1977) 177–195; MR 58 #7506.MathSciNetMATHCrossRefGoogle Scholar
  4. H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955; MR 17 779.MATHGoogle Scholar
  5. A. Götz & A. Rybarski, Problem 102, Colloq. Math.2 (1951) 301–302.Google Scholar
  6. L. Green, Auf Wiedersehensflächen, Ann. Math. (2) 78 (1963) 289–299; MR 27 # 5206.CrossRefGoogle Scholar
  7. D. Hilbert & S. Cohn-Vossen, Geometry and the Imagination, Chelsea, New York, 1952, 224.MATHGoogle Scholar
  8. W. Klingenberg, Lectures on Closed Geodesics, Springer-Verlag, Berlin, 1978; MR 57 # 17563.MATHCrossRefGoogle Scholar
  9. L. Lyusternik & L. Schnirelmann, Sur la problóme de trois géodésiques fermées sur les surfaces de genre 0, C. R. Acad. Sci. Paris 189 (1929) 269–271.Google Scholar
  10. H. Steinhaus, Problem 291, Colloq. Math. 7 (1959) 110.MathSciNetGoogle Scholar
  11. H. Steinhaus, On shortest paths on closed surfaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958) 303–308; MR 20 #3255. MathSciNetMATHGoogle Scholar
  12. N. Takeuchi, A surface which contains planar geodesics, Geom. Dedicata 27 (1988) 223–225.MathSciNetMATHCrossRefGoogle Scholar

Convex sets with universal sections

  1. C. Bessaga, A note on universal Banach spaces of finite dimension, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958) 97-101; MR 22 #4935. MathSciNetMATHGoogle Scholar
  2. B. Grünbaum, On a problem of S. Mazur, Bull. Res. Council Israel (Section F) 7 (1957/58) 133–135; MR 21 #4347.Google Scholar
  3. R. Grzaślewicz, A universal convex set in Euclidean space, Colloq. Math. 45 (1981) 41–44; MR 83m:52009. MathSciNetMATHGoogle Scholar
  4. V. Klee, Polyhedral sections of convex bodies, Acta. Math. 103 (1960) 243–267; MR 25 #2512. MathSciNetMATHCrossRefGoogle Scholar
  5. J. Lindenstrauss, Note on Klee’s paper “Polyhedral sections of convex bodies,” Israel J. Math. 4 (1966) 235–242; MR 35 #703. MathSciNetMATHCrossRefGoogle Scholar
  6. R. D. Mauldin, Problem 41, [Mau].Google Scholar
  7. Z. A. Melzak, Limit sections and universal points of convex surfaces, Proc. Amer. Math. Soc. 9 (1958) 729–734; MR 20 #4237.MathSciNetMATHCrossRefGoogle Scholar
  8. Z. A. Melzak, A property of convex pseudopolyhedra, Canad. Math. Bull. 2 (1959) 31–32; MR 21 # 320.MathSciNetMATHCrossRefGoogle Scholar
  9. G. C. Shephard, On a conjecture of Melzak, Canad. Math. Bull. 7 (1964) 561–563; MR 30 # 505.MathSciNetMATHCrossRefGoogle Scholar

Convex space-filling curves

  1. J. Pach, C. A. Rogers, Partly convex Peano curves, Bull. London Math. Soc 15 (1983) 321–328; MR 57 #10597. MathSciNetCrossRefGoogle Scholar
  2. G. Peano, Sur une courbe qui remplit une aire planeMath. Ann. 36 (1890) 157–160; MR 57 #10597. MathSciNetCrossRefGoogle Scholar

m-convex sets

  1. M. Breen, Decompositions for nonclosed planar m-convex sets, Pacific J. Math. 69 (1977) 317–324; MR 57 #10597. MathSciNetMATHCrossRefGoogle Scholar
  2. M. Breen, Decomposition theorems for 3-convex subsets of the plane, Pacific J. Math. 53 (1974) 43–57; MR 50 #5628. MathSciNetMATHCrossRefGoogle Scholar
  3. M. Breen, Intersectional properties concerning planar m-convex sets, Israel J. Math. 36 (1980) 83–88; MR S1h:52006. MathSciNetMATHCrossRefGoogle Scholar
  4. M. Breen, LNC points for m-convex sets, Int. J. Math. Math. Sci. 4 (1981) 513–528; MR 84:52008. MathSciNetMATHCrossRefGoogle Scholar
  5. M. Breen & D. Kay, General description theorems for m-convex sets in the plane, Israel J. Math. 8 (1970) 39–52.MathSciNetCrossRefGoogle Scholar
  6. D. I. Calvert, Generalizations of convexity, Thesis, University of London, 1979.Google Scholar
  7. H. G. Eggleston, A condition for a compact plane set to be a union of finitely many convex sets, Proc. Cambridge Philos. Soc. 76 (1974) 61–66; MR 49 # 7919.MathSciNetMATHCrossRefGoogle Scholar
  8. H. G. Eggleston, Valentine convexity in n dimensions, Math. Proc. Cambridge Philos. Soc. 80 (1976) 223–228; MR 53 #14310. MathSciNetMATHCrossRefGoogle Scholar
  9. H. G. Eggleston, A proof of a theorem of Valentine, Math. Proc. Cambridge Philos. Soc. 77 (1975) 525–528; MR 50 #14483. MathSciNetMATHCrossRefGoogle Scholar
  10. H. G. Eggleston, Vector sums of Valentine convex sets, Math. Proc. Cambridge Philos. Soc. 92 (1982) 17-19; MR 84j:52001. MathSciNetMATHCrossRefGoogle Scholar
  11. D. C. Kay & M. D. Guay, Convexity and a certain property P,,„ Israel J. Math. 8 (1970) 39–52; MR 46 #2385.MathSciNetMATHCrossRefGoogle Scholar
  12. J. J. Tattersall, A Helly order for a family of (m, n)-convex sets, Ars Combinatorica A20 (1985) 153–162; MR 87e:52015.MathSciNetGoogle Scholar
  13. F. A. Valentine, A three point convexity property, Pacific J. Math. 7 (1957)1227–1235; MR 20 # 6071.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hallard T. Croft
    • 1
  • Kenneth J. Falconer
    • 2
  • Richard K. Guy
    • 3
  1. 1.PeterhouseCambridgeEngland
  2. 2.School of MathematicsBristol UniversityBristolEngland
  3. 3.Department of Mathematics and StatisticsThe University of CalgaryCalgaryCanada

Personalised recommendations