Skip to main content

Stabilization of Hydrogen-Air Flames in Supersonic Flow

  • Chapter

Abstract

The operating range of scramjet engines for supersonic flight includes combustor inlet conditions, particularly in the lower flight Mach number range, which does not allow thermal self-ignition of hydrogen-air flames. Therefore, other methods have to be applied in order to insure safe and reliable ignition of supersonic combustion. Besides other methods, a very efficient tool for supersonic flame stabilization at low temperatures and pressures is the use of recirculation zones. These zones can also be generated in various ways in supersonic flows, for example, by bluff-body-type flame holders, by suitable shaping of fuel injectors or can be observed in connection with fuel jets injected from the sidewalls.

The Damköhler number for flame stabilization by recirculation zones, introducing the fuel characteristics via the laminar burning velocity, is derived and was checked experimentally for hydrocarbon fuels and hydrogen. It has been applied to hydrogen-air diffusion flames stabilized by cylindrical flame holders in supersonic flows up to Mach numbers of 2.1. Characteristic fluid mechanic times for hydrogen-air flames have been measured for a broad range of equivalance ratios. These results can be used for the sizing of recirculation zones or flames holders for supersonic and subsonic flame stabilization of hydrogen-air flames.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baev, V.K., Triet’yakov, P.K., and Konstantinovsky, V.A., 1981, “The Study of Hydrogen Combustion in a Ducted Supersonic Flow with a Sudden Expansion,” Archivum Combustionis, 1, 251–259

    Google Scholar 

  • Bartlmä, F., 1975, Gasdynamik der Verbrennung, Springer, Wien, New York.

    Book  Google Scholar 

  • Damköhler, G., 1936, “Einflüsse der Strömung, Diffusion und des Wärmeübergangs auf die Leistung von Reaktionsöfen,” Z. Elektrochemie, 42, 846.

    Google Scholar 

  • Lezberg, E.A., and Lancashire, R.B., 1961, “Expansion of Hydrogen-Air Combustion Products Through a Supersonic Exhaust Nozzle; Measurements of Static Pressure and Temperature Profiles,” Fourth AGARD Colloquium on Combustion and Propulsion, Pergamon Press, 286 pp.

    Google Scholar 

  • Löblich, K.R., 1962, “Zur Kinetik der Stabilisierung Turbulenter Flammen durch Flammenhalter,” Diss. Th. Hannover.

    Google Scholar 

  • Schmalz, F., 1971, “Messung und Theoretische Berechnung von Zündverzugszeiten in Wasserstoff-Luft-Gemischen bei Temperaturen um 1.000 K und Drücken unter 1 at,” Diss. TH., Aachen; DLR-FB71-08.

    Google Scholar 

  • Suttrop, F., 1972, “Ignition of Gaseous Hydrocarbon Fuels in Hypersonic Ramjets,” paper presented at the 1st ISABE, Marseille.

    Google Scholar 

  • Suttrop, F., 1973, “Experimentelle Untersuchungen über Thermische Selbstzündung Turbulenter Diffusionsflammen bei Hoher Geschwindigkeit,” Diss. TH., Aachen (D82), DLR-FB74-10.

    Google Scholar 

  • Townend, L.H., 1963, “Some Effects of Stable Combustion in Wakes Formed in a Supersonic Stream,” RAE. Tech. Note Aero 2872.

    Google Scholar 

  • Wilhelmi, H., 1972, Fourteenth Symposium, International, on Combustion, 585–593.

    Google Scholar 

  • Winterfeld, G., 1968, “On the Burning Limits of Flame Holder Stabilized Flames in Supersonic Flow,” AGARD-CP 34, paper 28.

    Google Scholar 

  • Winterfeld, G., 1976, “Untersuchungen über die Stabilisierung von Wasserstoff-Diffusionsflammen durch Flammenhalter in Überschallströmungen,” DLR-FB7635.

    Google Scholar 

  • Zukoski, E.E., and Marble, F.E., 1956, “Experiments Concerning the Mechanism of Flame Blow-off from Bluff Bodies,” Proc. Gas Dyn. Symp., Northwestern Univ., Evaston, Ill., 205 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Winterfeld, G. (1991). Stabilization of Hydrogen-Air Flames in Supersonic Flow. In: Angelino, G., De Luca, L., Sirignano, W.A. (eds) Modern Research Topics in Aerospace Propulsion. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0945-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0945-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6956-4

  • Online ISBN: 978-1-4612-0945-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics