Cluster Analysis and Multidimensional Scaling

  • J. D. Jobson
Part of the Springer Texts in Statistics book series (STS)


This chapter continues the discussion of data reduction techniques begun in Chapter 9. In Chapter 9 the focus was on reducing the number of variables or columns of the data matrix X. Chapter 10 begins by focusing on the reduction of the number of rows of X. Since the rows of X represent observational units, the approach is to combine the units into groups of relatively homogeneous units called clusters. For this approach to data reduction, the various techniques available are commonly called cluster analysis.


Multidimensional Scaling Cluster Solution Single Linkage Dissimilarity Matrix Proximity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited Literature and References

  1. 1.
    Anderberg, M.R. (1973).Cluster Analysis for Applications.New York: Academic Press.zbMATHGoogle Scholar
  2. 2.
    Cailliez, Francis (1983). “The Analytical Solution of the Additive Constant Problem,”Psychometrika48, 305–308.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Carroll, J.D. and Arabie, P. (1980). “Multidimensional Scaling” inAnnual Review of PsychologyM.R. Rosenzwerg and L.W. Porter (eds.). Palo Alto, CA: Annual Reviews.Google Scholar
  4. 4.
    Coxon, A.P.M. (1982).The User’s Guide to Multidimensional Scaling.Exter, NH: Heinemann Educational Books.Google Scholar
  5. 5.
    Davidson, M.L. (1983).Multidimensional Scaling.New York: John Wiley and Sons.Google Scholar
  6. 6.
    Edelbrock, Craig (1979). “Mixture Model Tests of Hierarchical Clustering Algorithms: The Problem of Classifying Everybody,”Multivariate Behavioral Research14, 367–384.CrossRefGoogle Scholar
  7. 7.
    Everitt, B.S. (1974).Cluster Analysis.London: Heinemann.Google Scholar
  8. 8.
    Giffi, A. (1990).Nonlinear Multivariate Analysis.New York: John Wiley and Sons.Google Scholar
  9. 9.
    Gordon, A.D. (1981).Classification.London: Chapman and Hall.zbMATHGoogle Scholar
  10. 10.
    Green, Paul E., Carmone, Frank J. and Smith, Scott M. (1989).Multidimensional Scaling: Concepts and Applications.Boston: Allyn and Bacon.Google Scholar
  11. 11.
    Hartigan, J.A. (1975).Clustering Algorithms.New York: John Wiley and Sons.zbMATHGoogle Scholar
  12. 12.
    Hubert, L. and Arabie, P. (1985). “Comparing Partitions,”Journal of Classification2, 193–218.CrossRefGoogle Scholar
  13. 13.
    Jain, A.K. and Dubes, R.C. (1988).Algorithms for Clustering Data.Englewood Cliffs, NJ: Prentice-Hall.zbMATHGoogle Scholar
  14. 14.
    Jambu, Michel (1991).Exploratory and Multivariate Data Analysis.New York: Academic Press.zbMATHGoogle Scholar
  15. 15.
    Jobson, J.D. and Schneck, Rodney (1982). “Constituent Views of Organizational Effectiveness: Evidence from Police Organizations,”Academy of Management Journal25, 25–46.CrossRefGoogle Scholar
  16. 16.
    Kruskal, J.B. and Wish, M. (1978).Multidimensional Scaling.Beverly Hills, CA: Sage Publications.Google Scholar
  17. 17.
    .Lorr, Maurice (1983).Cluster Analysis for Social Scientists.San Francisco:Jossey-Bass. Google Scholar
  18. 18.
    Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979).Multivariate Analysis.London: Academic Press.zbMATHGoogle Scholar
  19. 19.
    Milligan, Glen W. (1980). “An Examination of the Effect of Six Types of Error Perturbation of Fifteen Clustering Algorithms,”Psychometrika45, 325–342.CrossRefGoogle Scholar
  20. 20.
    Milligan, Glen W. (1981). “A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis,”Psychometrika46,187–199.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Milligan, Glen W. and Cooper, Martha C. (1985). “An Examination of Procedures for Determining the Number of Clusters in a Data Set,”Psychometrika50, 159–179.CrossRefGoogle Scholar
  22. 22.
    Milligan, Glen W. and Cooper, Martha C. (1986). “A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis,”Multivariate Behavioral Research21, 441–458.CrossRefGoogle Scholar
  23. 23.
    Milligan, Glen W. and Cooper, Martha C. (1988). “A Study of Standardization of Variables in Cluster Analysis,”Journal of Classification5, 181–204.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mojena, R. (1977). “Hierarchical Grouping Methods and Stopping Rules: An Evaluation,”The Computer Journal20, 359–363.zbMATHCrossRefGoogle Scholar
  25. 25.
    Overall, John E. and Klett, C. James (1972).Applied Multivariate Analysis.New York: McGraw-Hill.Google Scholar
  26. 26.
    Romney, A.K., Shepard, R.N. and Nerlove, S.B. (eds.) (1972).Multidimensional Scaling: Theory and Applications in the Behavioral Sciences Volume II: Applications. New York: Seminar Press.zbMATHGoogle Scholar
  27. 27.
    Schiffman, S.S., Reynolds, M.L. and Young, F.W. (1981).Introduction to Multidimensional Scaling: Theory Methods and Applications. London and New York: Academic Press.zbMATHGoogle Scholar
  28. 28.
    Saber, G.A.F. (1984).Multivariate Observations.New York: John Wiley and Sons.CrossRefGoogle Scholar
  29. 29.
    Shepard, R.N., Romney, A.K. and Nerlove, S.B. (eds.) (1972).Multidimensional Scaling: Theory and Applications in the Behavioral Sciences Volume I: Theory. New York: Seminar Press.zbMATHGoogle Scholar
  30. 30.
    Spence, Ian and Ogilvie, John (1973). “A Table of Expected Stress Values for Random Rankings in Nonmetric Multidimensional Scaling,”Multivariate Behavioral Research8, 511–517.CrossRefGoogle Scholar
  31. 31.
    Spence, Ian and Graef, Jed (1974). “The Determination of the Underlying Dimensionality of an Empirically Obtained Matrix of Proximities,”Multivariate Behavioral Research9, 331–341.CrossRefGoogle Scholar
  32. 32.
    Spence, Ian and Lewandowsky, Stephan (1989). “Robust Multidimensional Scaling,”Psychometrika54, 501–513.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Takane, Y., Young, F.W. and de Leeuw, J. (1977). “Nonmetric Individual Differences Scaling: An Alternating Least Squares Method with Optimal Scaling Features,”Psychometrika42, 3–27.CrossRefGoogle Scholar
  34. 34.
    Waganaar, W.A. and Padmos, P. (1971). “Quantitative Interpretation of Stress in Kruskal’s Multidimensional Scaling Technique,”British Journal of Mathematical and Statistical Psychology24, 101–110.CrossRefGoogle Scholar
  35. 35.
    Wishart, David (1987).Clustan User Manual4th Edition. Edinburgh: University of Saint Andrews.Google Scholar
  36. 36.
    Young, Forest W. (1970). “Nonmetric Multidimensional Scaling: Recovery of Metric Information,”Psychometrika35, 455–473.CrossRefGoogle Scholar
  37. 37.
    Young, F.W., Takane, Y. and Lewyckyj, R. (1978), “Three Notes on Alscal,”Psychometrika43, 433–435.CrossRefGoogle Scholar
  38. 38.
    Young, F.W. (1984). “Scaling” inAnnual Review of PsychologyM.R. Rosenzwerg and L.W. Porter (eds.). Palo Alto, CA: Annual Reviews.Google Scholar
  39. 39.
    Young, F.W. (1987).Multidimensional Scaling: History Theory and Applications (R.M. Hamer, ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. D. Jobson
    • 1
  1. 1.Faculty of BusinessUniversity of AlbertaEdmontonCanada

Personalised recommendations