Bayesian Statistical Inference for Psychological Research

  • Ward Edwards
  • Harold Lindman
  • Leonard J. Savage
Part of the Springer Series in Statistics book series (SSS)

Abstract

Bayesian statistics, a currently controversial viewpoint concerning statistical inference, is based on a definition of probability as a particular measure of the opinions of ideally consistent people. Statistical inference is modification of these opinions in the light of evidence, and Bayes’ theorem specifies how such modifications should be made. The tools of Bayesian statistics include the theory of specific distributions and the principle of stable estimation, which specifies when actual prior opinions may be satisfactorily approximated by a uniform distribution. A common feature of many classical significance tests is that a sharp null hypothesis is compared with a diffuse alternative hypothesis. Often evidence which, for a Bayesian statistician, strikingly supports the null hypothesis leads to rejection of that hypothesis by standard classical procedures. The likelihood principle emphasized in Bayesian statistics implies, among other things, that the rules governing when data collection stops are irrelevant to data interpretation. It is entirely appropriate to collect data until a point has been proven or disproven, or until the data collector runs out of time, money, or patience.

Keywords

Schizophrenia Drilling Assure Black Ball Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anscombe, F.J. Bayesian statistics. Amer. Statist., 1961, 15(1), 21–24.Google Scholar
  2. Bahadur, R.R., & Robbins, H. The problem of the greater mean. Ann. Math. Statist., 1950, 21, 469–487.MathSciNetMATHCrossRefGoogle Scholar
  3. Barnard, G.A. A review of “Sequential Analysis” by Abraham Wald. J. Amer. Statist. Ass., 1947, 42, 658–6CrossRefGoogle Scholar
  4. Barnard, G.A., Jenkins, G.M., & Winsten, C.B. Likelihood, inferences, and time series. J. Roy. Statist. Soc., 1962, 125 (Ser. A), 321–372.CrossRefGoogle Scholar
  5. Bayes, T. Essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc., 1763, 53, 370–418. (Reprinted: Biometrika, 1958, 45, 293-315.)CrossRefGoogle Scholar
  6. Berkson, J. Some difficulties of interpretation encountered in the application of the chi-square test. J. Amer. Statist. Ass., 1938, 33, 526–542.MATHCrossRefGoogle Scholar
  7. Berkson, J. Tests of significance considered as evidence. J. Amer. Statist. Ass., 1942, 37, 325–335.CrossRefGoogle Scholar
  8. Birnbaum, A. On the foundations of statistical inference. J. Amer. Statist. Ass., 1962, 57, 269–306.MathSciNetMATHCrossRefGoogle Scholar
  9. Blackwell, D., & Dubins, L. Merging of opinions with increasing information. Ann. Math. Statist., 1962, 33, 882–886.MathSciNetMATHCrossRefGoogle Scholar
  10. Borel, E. La théorie du jeu et les équations intàgrales à noyau symétrique. CR Acad. Sci., Paris, 1921, 173, 1304–1308. (Trans, by L.J. Savage, Econometrica, 1953, 21, 97-124)MATHGoogle Scholar
  11. Borel, E. A propos d’un traité de probabilités. Rev. Phil., 1924, 98, 321–336. (Reprinted: In: Valeur pratique et philosophie des probabilités. Paris: Gauthier-Villars, 1939. Pp. 134-1Google Scholar
  12. Bridgman, P.W. A critique of critical tables. Proc. Nat. Acad. Sci., 1960, 46, 1394–1401.CrossRefGoogle Scholar
  13. Cramer, H. Mathematical methods of statistics. Princeton: Princeton Univer. Press, 1946.MATHGoogle Scholar
  14. de Finetti, B. Fondamenti logici del ragionamento probabilistico. Boll. Un. mat. Ital., 1930, 9(Ser. A), 258–261.MATHGoogle Scholar
  15. de Finetti, B. La prévision: Ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré, 1937, 7, 1–68.Google Scholar
  16. de Finetti, B. La probabilité e la statistica nei rapporti con l’induzione, secondo i diversi punti da vista. In, Induzione & statistica. Rome, Italy: Istituto Matematico dell’Universita, 1959.Google Scholar
  17. de Finetti, B., & Savage, L.J. Sul modo di scegliere le probabilità iniziali. In, Biblioteca del “metron” Ser. C, Vol. 1. Sui fondamenti della statistica. Rome: University of Rome, 1962. Pp. 81–154.Google Scholar
  18. Edwards, W. Dynamic decision theory and probabilistic information processing. Hum. Factors, 1962, 4, 59–73. (a)Google Scholar
  19. Edwards, W. Subjective probabilities inferred from decisions. Psychol. Rev., 1962, 69, 109–135. (b)CrossRefGoogle Scholar
  20. Edwards, W. Probabilistic information processing in command and control systems. Report No. 3780-12-T, 1963. Institute of Science and Technology, University of Michigan.Google Scholar
  21. Fisher, R.A. Statistical methods for research workers. (12th ed., 1954) Edinburgh: Oliver & Boyd, 1925.Google Scholar
  22. Fisher, R.A. Contributions to mathematical statistics. New York: Wiley, 1950.MATHGoogle Scholar
  23. Fisher, R.A. Statistical methods and scientific inference. (2nd ed., 1959) Edinburgh: Oliver & Boyd, 1956.Google Scholar
  24. Good, LJ. Probability and the weighing of evidence. New York: Hafner, 1950.MATHGoogle Scholar
  25. Good, LJ. Weight of evidence, corroboration, explanatory power, information and the utility of experiments. J. Roy. Statist. Soc., 1960, 22(Ser. B), 319–331.MathSciNetMATHGoogle Scholar
  26. Grant, D.A. Testing the null hypothesis and the strategy and tactics of investigating theoretical models. Psychol. Rev., 1962, 69, 54–61.CrossRefGoogle Scholar
  27. Grayson, C.J., Jr. Decisions under uncertainty: Drilling decisions by oil and gas operators. Boston: Harvard Univer. Press, 1960.Google Scholar
  28. Green, B.J., Jr., & Tukey, J.W. Complex analysis of variance: General problems. Psy-chometrika, 1960, 25, 127–152.MathSciNetMATHGoogle Scholar
  29. Guilford, J.P. Fundamental statistics in psychology and education. (3rd ed., 1956) New York: McGraw-Hill, 1942.Google Scholar
  30. Halmos, P.R., & Savage, L.J. Application of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. math. Statist., 1949, 20, 225–241.MathSciNetMATHCrossRefGoogle Scholar
  31. Hildreth, C. Bayesian statisticians and remote clients. Econometrica, 1963, 31, in press.Google Scholar
  32. Hodges, J.L., & Lehmann, E.L. Testing the approximate validity of statistical hypotheses. J. Roy. Statist. Soc., 1954, 16(Ser. B), 261–268.MathSciNetMATHGoogle Scholar
  33. Jeffreys, H. Scientific inference. (3rd ed., 1957) England: Cambridge Univer. Press, 1931.Google Scholar
  34. Jeffreys, H. Theory of probability. (3rd ed., 1961) Oxford, England: Clarendon, 1939.Google Scholar
  35. Koopman, B.O. The axioms and algebra of intuitive probability. Ann. Math., 1940, 41(Ser. 2), 269–292. (a)MathSciNetCrossRefGoogle Scholar
  36. Koopman, B.O. The bases of probability. Bull Amer. Math. Soc., 1940, 46, 763–774. (b)MathSciNetCrossRefGoogle Scholar
  37. Koopman, B.O. Intuitive probabilities and sequences. Ann. Math., 1941, 42(Ser. 2), 169–187.MathSciNetCrossRefGoogle Scholar
  38. Lehmann, E.L. Significance level and power. Ann. math. Statist., 1958, 29, 1167–1176.MATHCrossRefGoogle Scholar
  39. Lehmann, E.L. Testing statistical hypotheses. New York: Wiley, 1959.MATHGoogle Scholar
  40. Lindley, D.V. A statistical paradox. Biometrika, 1957, 44, 187–192.MathSciNetMATHGoogle Scholar
  41. Lindley, D.V. The use of prior probability distributions in statistical inferences and decisions. In, Proceedings of the fourth Berkeley symposium on mathematics and probability. Vol. 1. Berkeley: Univer. California Press, 1961. Pp. 453–468.Google Scholar
  42. Neyman, J. Outline of a theory of statistical estimation based on the classical theory of probability. Phil. Trans. Roy. Soc., 1937, 236(Ser. A), 333–380.Google Scholar
  43. Neyman, J. L’estimation statistique, traitée comme un problème classique de probabilité. In, Actualités scientifiques et industrielles. Paris, France: Hermann & Cie, 1938. Pp. 25–57. (a)Google Scholar
  44. Neyman, J. Lectures and conferences on mathematical statistics and probability. (2nd ed., 1952) Washington, D.C.: United States Department of Agriculture, 1938. (b)MATHGoogle Scholar
  45. Neyman, J. “Inductive behavior” as a basic concept of philosophy of science. Rev. Math. Statist. Inst., 1957, 25, 7–22.CrossRefGoogle Scholar
  46. Pearson, E.S. In L.J. Savage et al., The foundations of statistical inference: A discussion. New York: Wiley, 1962.Google Scholar
  47. Pratt, J.W. Review of Testing Statistical Hypotheses by E.L. Lehmann. J. Amer. Statist. Ass., 1961, 56, 163–167.MathSciNetCrossRefGoogle Scholar
  48. Raiffa, H., & Schlaifer, R. Applied statistical decision theory. Boston: Harvard University, Graduate School of Business Administration, Division of Research, 1961.Google Scholar
  49. Ramsey, F.P. “Truth and probability” (1926), and “Further considerations” (1928). In, The foundation of mathematics and other essays. New York: Harcourt, Brace, 1931.Google Scholar
  50. Rozeboom, W.W. The fallacy of the null-hypothesis significance test. Psychol. Bull., 1960, 57, 416–428.CrossRefGoogle Scholar
  51. Savage, I.R. Nonparametric statistics. J. Amer. Statist. Ass., 1957, 52, 331–344.MathSciNetCrossRefGoogle Scholar
  52. Savage, I.R. Bibliography of nonparametric statistics. Cambridge: Harvard Univer. Press, 1962.Google Scholar
  53. Savage, L.J. The foundations of statistics. New York: Wiley, 1954.MATHGoogle Scholar
  54. Savage, L.J. The foundations of statistics reconsidered. In, Proceedings of the fourth Berkeley symposium on mathematics and probability. Vol. 1. Berkeley: Univer. California Press, 1961. Pp. 575–586.Google Scholar
  55. Savage, L.J. Bayesian statistics. In, Decision and information processes. New York: Macmillan, 1962. Pp. 161–194. (a)Google Scholar
  56. Savage, L.J. Subjective probability and statistical practice. In L.J. Savage et al., The foundations of statistical inference: A discussion. New York: Wiley, 1962. (b)Google Scholar
  57. Savage, L.J., et al. The foundations of statistical inference: A discussion. New York: Wiley, 1962.Google Scholar
  58. Scheffé, H. The analysis of variance. New York: Wiley, 1959.MATHGoogle Scholar
  59. Schlaifer, R. Probability and statistics for business decisions. New York: McGraw-Hill, 1959.Google Scholar
  60. Schlaifer, R. Introduction to statistics for business decisions. New York: McGraw-Hill, 1961.Google Scholar
  61. Sinclair, H. Hiawatha’s lipid. Per sped. Biol. Med., 1960, 4, 72–76.Google Scholar
  62. Stein, C. A remark on the likelihood principle. J. Roy. Statist. Soc., 1962, 125(Ser. A), 565–568.Google Scholar
  63. Sterling, T.D. What is so peculiar about accepting the null hypothesis? Psychol. Rep., 1960, 7, 363–364.Google Scholar
  64. Tukey, J.W. The future of data analysis. Ann. math. Statist., 1962, 33, 1–67.MathSciNetMATHCrossRefGoogle Scholar
  65. Urey, H.C. Origin of tektites. Science, 1962, 137, 746.CrossRefGoogle Scholar
  66. von Neumann, J. Zur Theorie der Gesellschaftsspiele. Math. Ann., 1928, 100, 295–320.MathSciNetMATHCrossRefGoogle Scholar
  67. von Neumann, J., & Morgenstern, O. Theory of games and economic behavior. (3rd ed., 1953) Princeton: Princeton Univer. Press, 1947.MATHGoogle Scholar
  68. Wald, A. On the principles of statistical inference. (Notre Dame Mathematical Lectures, No. 1) Ann Arbor, Mich.: Edwards, 1942. (Litho)Google Scholar
  69. Wald, A. Selected papers in statistics and probability. New York: McGraw-Hill, 1955.Google Scholar
  70. Walsh, J.E. Handbook of nonparametric statistics. Princeton, N.J.: Van Nostrand, 1962.MATHGoogle Scholar
  71. Wolfowitz, J. Bayesian inference and axioms of consistent decision. Econometrica, 1962, 30, 470–479.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ward Edwards
    • 1
  • Harold Lindman
    • 1
  • Leonard J. Savage
    • 1
  1. 1.University of MichiganUSA

Personalised recommendations