Solitary Waves in Ferroelectric Liquid Crystals

  • J. E. Maclennan
  • N. A. Clark
  • M. A. Handschy
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)


Since their discovery by Meyer et al. in 1975,1 ferroelectric liquid crystals (FLCs) in the smectic C phase have been the focus of a considerable research effort. It is now well established thay any tilted smectic liquid crystalline phase composed of chiral molecules should possess a permanent electric polarization P which is oriented perpendicular to the molecular director ñ and parallel to the smectic layer plane (See Figure 5.1). The presence of permanent dipoles fundamentally alters the nature of the interactions between the molecules themselves and with any cell walls or applied electric fields. This is evidenced by the existence of a whole family of director orientational structures which result in the distinctive textures peculiar to ferroelectric liquid crystals (FLCs)2


Domain Wall Solitary Wave Smectic Layer Helix Pitch Ferroelectric Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975)CrossRefGoogle Scholar
  2. 2.
    See, e.g., the Special Issue on Ferroelectric Liquid Crystals, Ferroelectrics 59, 69 (1984)CrossRefGoogle Scholar
  3. 3.
    P. E. Cladis, H. R. Brand, and P. L. Finn, Phys. Rev. A 28, 512 (1983)CrossRefADSGoogle Scholar
  4. 4.
    T. Shingu, T. Tsuchiya, Y. Ouchi, H. Takezoe, and A. Fukuda, Jpn. J. Appl. Phys. 25, L206 (1986)CrossRefADSGoogle Scholar
  5. 5.
    J. E. Maclennan, N. A. Clark, M. A. Handschy, and M. R. Meadows, Liq. Cryst.7, 753 (1990)CrossRefGoogle Scholar
  6. 6.
    M. A. Handschy and N. A. Clark, Appl. Phys. Lett. 41, 39 (1982)CrossRefADSGoogle Scholar
  7. 7.
    The results presented in Secs. 5.2 to 5.4 are from J. E. Maclennan, Switching Dynamics and Structures of Ferroelectric Liquid Crystals in the Surface Stabilized Geometry, Ph.D. Dissertation, University of Colorado (1988)Google Scholar
  8. 8.
    M. A. Handschy and N. A. Clark, Ferroelectrics 59, 69 (1984)CrossRefGoogle Scholar
  9. 9.
    DOBAMBC is decyloxybenzylidene-p’-amino-2-methylbutylcinnamateGoogle Scholar
  10. 10.
    C. Rosenblatt, R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 42, 1220 (1979)CrossRefADSGoogle Scholar
  11. 11.
    J.-Z. Xue, M. A. Handschy, and N. A. Clark, Ferroelectrics 73, 305 (1987)CrossRefGoogle Scholar
  12. 12.
    G. D. Smith, Numerical Solutions of Partial Differential Equations: Finite Difference Methods, 2nd ed. (Clarendon, Oxford, 1978)Google Scholar
  13. 13.
    D. G. Aronson and H. F. Weinberger, Lect. Notes Math. 446, 3 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    For values of N much larger than 1200 (z“ domains much larger than 60) the solution of the finite difference equations would show the evolution of the solitary wave only at the beginning. After some characteristic amount of time had passed (t’ 30) the solution would collapse towards the orientation of stable equilibrium everywhere except near the boundary. The same collapse was observed when we attempted to expand the domain by transforming to a new independent variable S - arctan z”. We suspect that the cause of the instability is a computer roundoff error which positions dipoles meant to be at unstable equilibrium at orientations where they actually feel small torques. The applied field then Further distorts the configuration before the wave front arrives there. In systems with a small domain the weak elastic influence of the boundaries prevents the instabilityGoogle Scholar
  15. 15.
    G. Dee and S. Langer, Phys. Rev. Lett. 50, 383 (1983); G. Dee, Physica D 15, 295 (1985)MATHGoogle Scholar
  16. 16.
    W. van Saarloos, Phys. Rev. Lett. 58, 2571 (1987)CrossRefGoogle Scholar
  17. 17.
    R. Haberman, Mathematical Models (Prentice-Hall, Englewood Cliffs, 1977)Google Scholar
  18. 18.
    M. Büttiker and H. Thomas, Phys. Rev. A 37, 235 (1988)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    P. E. Cladis, in Future Trends in Material Sciences, edited by J. Keller (World Scientific, Singapore, 1988); P. Schiller, G. Pelzl, and D. Demus, Liq. Cryst. 2, 21 (1987); P. E. Cladis and W. van Saarloos, Chap. 4 of this volumeGoogle Scholar
  20. 20.
    M. Glogarova, J. Fousek, L. Lejcek, and J. Pavel, Ferroelectrics 58, 161 (1984)CrossRefGoogle Scholar
  21. 21.
    N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)CrossRefADSGoogle Scholar
  22. 22.
    M. A. Handschy, N. A. Clark, and S. T. Lagerwall, Phys. Rev. Lett. 51, 471 (1983)CrossRefADSGoogle Scholar
  23. 23.
    J.-Z. Xue, N. A. Clark, and M. R. Meadows, Appl. Phys. Lett. 53, 2397 (1988)CrossRefADSGoogle Scholar
  24. 24.
    T. P. Rieker, N. A. Clark, G. S. Smith, D. S. Parmar, E. B. Sirota, and C. R. Safinya, Phys. Rev. Lett. 59, 2658 (1987); N. A. Clark and T. P. Rieker, Phys. Rev. A 37, 1053 (1988)CrossRefGoogle Scholar
  25. 25.
    J. E. Maclennan, M. A. Handschy, and N. A. Clark, Phys. Rev. A 34, 3554 (1986)CrossRefADSGoogle Scholar
  26. 26.
    M. I. Barnik, V. A. Baikalov, V. G. Chigrinov, and E. P. Pozhidaev, Mol. Cryst. Liq. Cryst. 143, 101 (1987)CrossRefGoogle Scholar
  27. 27.
    P. G. Amaya, M. A. Handschy, and N. A. Clark, Opt. Eng. 23, 261 (1984)Google Scholar
  28. 28.
    The domain walls found in Ref. 8 were initially attributed to the FLC-solid interfaces. In light of the discovery of the chevron structure (Ref. 24) it is clear that they were in fact at the chevron interface, and are the internal disclination first described by Ouchi et al. (Ref. 32)Google Scholar
  29. 29.
    M. Isogai, S. Nonaka, K. Kondo, K. Itoh, M. Odamura, and M. Mukoh, 11th Int’l. LC Conference,Berkeley, July 1986Google Scholar
  30. 30.
    Y. Yamada, T. Tsuji, N. Yamamato, M. Yamawaki, H. Orihara, and Y. Ishibashi, 11th Intl. LC Conference, Berkeley, July 1986; Y. Ishibashi, H. Orihara, K. Nakamura, and Y. Yamada, Jpn. J. Appl. Phys. 26, 107 (1987)Google Scholar
  31. 31.
    P. E. Cladis, W. van Saarloos, P. L. Finn, and A. R. Kortan, Phys. Rev. Lett. 58, 222 (1987)CrossRefADSGoogle Scholar
  32. 32.
    Y. Ouchi, H. Takezoe, and A. Fukuda, Jpn. J. Appl. Phys. 26, 1 (1984)CrossRefADSGoogle Scholar
  33. 33.
    N. A. Clark, T. P. Rieker, and J. E. Maclennan, Ferroelectrics 85, 79 (1988)CrossRefGoogle Scholar
  34. 34.
    H. Orihara and Y. Ishibashi, Jpn. J. Appl. Phys. 23, 1274 (1984)CrossRefADSGoogle Scholar
  35. 35.
    H. Takezoe, Y. Ouchi, K. Ishikawa, and A. Fukuda, Mol. Cryst. Liq. Cryst. 139, 27 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. E. Maclennan
  • N. A. Clark
  • M. A. Handschy

There are no affiliations available

Personalised recommendations