Skip to main content

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

The use of plane shock waves to determine the equations of state of condensed materials to very high pressure began in 1955 with the classic papers of Walsh and Christian (1955) and Bancroft et al. (1956). Walsh and Christian described the use of in-contact explosives to determine dynamic pressure– volume relations for metals and compare these to the then available static compression data. Bancroft et al. described the first polymorphic phase change discovered in a solid, via shock waves—iron. Two years later Soviet workers (Al’tshuler et al., 1958) reported the first data for iron to pressures of several million bars (megabars) actually exceeding the pressure conditions within the center of the Earth. Since that time the equations of state of virtually hundreds of condensed materials have been studied, including elements, compounds, alloys, rocks and minerals, polymers, fluids, and porous media. These studies have employed both conventional and nuclear explosive sources, as well as impactors launched with a range of guns to speeds of approximately 10 km/s. Recently, Avrorin et al. (1986) have reported shock-compression data in lead to a record pressure of 550 Mbar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens T.J. (1979), Equations of State of Iron Sulfide and Constraints on the Sulfur Content of the Earth, J. Geophys. Res. 84, 985–998

    Article  ADS  Google Scholar 

  • Ahrens T.J., Anderson D.L., and Ringwood A.E. (1969), Equation of State and Crystal Structures of High-Pressure Phases of Shocked Silicates and Oxides, Rev. Geophys. 7, 667–707

    Article  ADS  Google Scholar 

  • Ahrens T.J., Lyzenga G.A., and Mitchell A.C. (1982), Temperatures Induced by Shock Waves in Minerals, in High Pressure Research in Geophysics (edited by Akimoto S. andM.H. Manghnani), Center for Academic Publications, Japan, pp. 579–594

    Chapter  Google Scholar 

  • Ahrens T.J., and O’Keefe J.D. (1972), Shock Melting and Vaporization of Lunar Rocks and Minerals, The Moon 4, 214–249

    Article  ADS  Google Scholar 

  • Ahrens T.J., and O’Keefe J.D. (1977), Equation of State and Impact-Induced Shock-Wave Attenuation on the Moon, in Impact and Explosion Cratering (edited by Roddy D.J. et al.), Pergamon Press, New York, pp. 639–656

    Google Scholar 

  • Al’tshuler L.V. (1965), Use of Shock Waves in High-Pressure Physics, Soviet Phys. Uspekhi 85, 52–91

    Article  ADS  Google Scholar 

  • Al’tshuler L.V., Kormer S.B., Brazhnik M.I., Vladimirov L.A., Speranskaya M.P., and Funtikov A.I. (1960), The Isentropic Compressibility of Aluminum, Copper, Lead, and Iron at High Pressures, Soviet Phys. JETP 11, 766–775

    Google Scholar 

  • Al’tshuler L.V., Krupnikov K.K., Ledenev B.N., Zhuchikhin V.I., and Broznik M.I. (1958), Dynamic Compressibility and Equation of State of Iron under High Pressure, Soviet Phys. JETP 34 (7), 606–19

    Google Scholar 

  • Avrorin E.N., Vodolaga B.K., Voloshin N.P., Kuropatenko V.F., Kovalenko G.V., Simonenko V.A., and Chernovolyuk B.T. (1986), Experimental Confirmation of Shell Effects on the Shock Adiabats of Aluminum and Lead, JETP Lett. 43, 308–311

    ADS  Google Scholar 

  • Bakanova A.A., Zubarev V.N., Sutulov Y.N., and Trunin R.F. (1976), Thermodynamic Properties of Water at High Pressures and Temperatures, Soviet Phys. JETP 41 544–548

    ADS  Google Scholar 

  • Bancroft D., Peterson E.L., and Minshall S. (1956), Polymorphism of Iron at High Pressure, J. Appl. Phys. 27, 291–298

    Article  ADS  Google Scholar 

  • Barker L.M., and Hollenbach R.E. (1972), Laser Interferometer for Measuring High Velocities of Any Reflecting Surface, J. Appl. Phys. 43, 4669–4675

    Article  ADS  Google Scholar 

  • Bass J.D., Svendsen B., and Ahrens T.J., (1987), The Temperatures of Shock-Compressed Iron, in High Pressure Research in Mineral Physics (edited by Manghnani M. and Y. Syono), Terra Scientific, Tokyo, pp. 393–402

    Google Scholar 

  • Birch F. (1978), Finite Strain Isotherm and Velocities for Single-Crystal and Poly-crystalline NaCl at High Pressures and 300 K, J. Geophys. Res. 83, 1257–1268

    Article  ADS  Google Scholar 

  • Bloomquist D.D., Duvall G.E., and Dick J.J. (1979), Electrical Response of a Bimetallic Junction to Shock Compression, J. Appl. Phys. 50, 4838–4846

    Article  ADS  Google Scholar 

  • Boslough M. (1988), Postshock Temperatures in Silica, J. Geophys. Res. 93, 6477–6484

    Article  ADS  Google Scholar 

  • Boslough M.B., and Ahrens T.J. (1984), Particle Velocity Experiments in Anorthosite and Gabbro, in Shock Waves in Condensed Matter— 1983, (edited by Asay J.R. et al.), Elsevier Science, New York, pp. 525–528

    Google Scholar 

  • Boslough M.B., and Ahrens T.J. (1989), A Sensitive Time-Resolved Radiation Pyrometer for Shock-Temperature Measurements above 1500 K, Rev. Sci. Instrum. 60, 3711–3716

    Article  ADS  Google Scholar 

  • Brown J.M., and McQueen R.G. (1982), The Equation of State for Iron and the Earth’s Core, in High Pressure Research in Geophysics (edited by Akimoto S. and M.H. Manghnani), Academic Press, New York, pp. 611–622

    Chapter  Google Scholar 

  • Davison L., and Graham R.A. (1979), Shock Compression of Solids. Phys. Rep. 55, 255–379

    Article  ADS  Google Scholar 

  • Duvall G.E., and Fowles G.R. (1963), Shock Waves, in High Pressure Physics and Chemistry (edited by Bradley R.S.), Academic Press, New York, pp. 209–292

    Google Scholar 

  • Fowles G.R. (1960), Attenuation of the Shock Wave Produced in a Solid by a Flying Plate, J. Appl. Phys. 31, 655–661

    Article  MathSciNet  ADS  Google Scholar 

  • Gehrels T. (1978), Protostars and Planets, University of Arizona Press, Tucson, pp. 1–756

    Google Scholar 

  • Grady D.E. (1977), Processes Occurring on Shock Wave Compression of Rocks and Minerals, in High Pressure Research: Applications in Geophysics (edited by Manghnani M.H. and S. Akimoto), Academic Press, New York, pp. 389–438

    Google Scholar 

  • Grover R., and Urtiew P.A. (1974), Thermal Relaxation at Interfaces Following Shock Compression, J. Appl. Phys. 45, 146–152

    Article  ADS  Google Scholar 

  • Holmes N.C., Moriarty J.A., Gathers G.R., and Nellis W.J. (1989), The Equation of State of Platinum to 660 GPa (6.6 Mbar), J. Appl. Phys. 66, 2962–2967

    Article  ADS  Google Scholar 

  • Jeanloz R. (1989), Shock Wave Equation of State and Finite Strain Theory, J. Geophys. Res 94, 5873–5886

    Article  ADS  Google Scholar 

  • Jeanloz R., and Ahrens T.J. (1979), Release Adiabat Measurements on Minerals: The Effect of Viscosity, J. Geophys. Res. 84, 7545–7548

    ADS  Google Scholar 

  • Jeanloz R., and Ahrens T.J. (1980), Equations of State of FeO and CaO, Geophys. J. Roy. Astronom. Soc. 62, 505–528

    Article  Google Scholar 

  • Jeanloz R., and Grover R. (1988), Birch–Murnaghan and Us–Up Equations of State, in Proceedings of the American Physical Society Topical Conference on Shock Waves in Condensed Matter, Monterey, CA, 1987 (edited by Schmidt S.C. and N.C. Holmes), Plenum, New York, pp. 69–72

    Google Scholar 

  • Jones O.E. (1972), Metal Response under Dynamic Loading, in Behavior and Utilization of Explosives in Engineering Design (edited by Henderson R.L.), University of New Mexico Press, Albuquerque, pp. 125–148

    Google Scholar 

  • Kormer S.B., Sinitsyn M.V., Kirillov G.A., and Urlin V.D. (1965), Experimental Determination of Temperature in Shock-Compressed NaCl and KC1 and of Their Melting Curves at Pressures up to 700 kbar, Soviet Phys. Uspekhi (Engl. transl.), 21, 689–700

    ADS  Google Scholar 

  • Lyzenga G.A., and Ahrens T.J. (1979), Multiwavelength Optical Pyrometer for Shock Compression Experiments, Rev. Sci. Instrum. 50, 1421–1424

    Article  ADS  Google Scholar 

  • Marsh S.P. (1980), LASL Shock Hugoniot Data, University of California Press, Berkeley, pp. 1–327

    Google Scholar 

  • McQueen R.G., Hopson J.W., and Fritz J.N. (1982), Optical Technique for Determining Rarefaction Wave Velocities at Very High Pressures, Rev. Sci. Instrum. 53, 245–250

    Article  ADS  Google Scholar 

  • McQueen R.G., Marsh S.P., Taylor J.W., Fritz J.N., and Crater W.J. (1970), The Equation of State of Solids from Shock Wave Studies, in High-Velocity Impact Phenomena (edited by Kinslow R.), Academic Press, San Diego, pp. 249–419

    Google Scholar 

  • Miller G.H., and Ahrens T.J. (1991), Shock-Wave Viscosity Measurement, Rev. Modern Phys. 63, 919–948

    Article  ADS  Google Scholar 

  • Mitchell A.C., and Nellis W.J. (1981), Shock Compression of Aluminum, Copper, and Tantalum, J. Appl. Phys. 52, 3363–3374

    Article  ADS  Google Scholar 

  • Mitchell A.C., and Nellis W.J. (1982), Equation of State and Electrical Conductivity of Water and Ammonia Shocked to the 100 GPa (1 Mbar) Pressure Range, J. Chem. Phys. 76, 6273–6281

    Article  ADS  Google Scholar 

  • Morris C.E., Fritz J.N., and McQueen R.G. (1984), The Equation of State of Poly-tetrafluoroethylene to 80 GPa. J. Chem. Phys. 80, 5203–5218

    Article  ADS  Google Scholar 

  • Murr L.E. (1981), Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum, New York, pp. 1–1101

    Google Scholar 

  • Murri W.J., Curran D.R., Petersen C.F., and Crewdson R.C. (1974), Response of Solids to Shock Waves, in Advances in High Pressure Research, Academic Press, New York, pp. 1–163

    Google Scholar 

  • Raikes S.A., and Ahrens T.J. (1979a), Measurements of Post-Shock Temperatures in Aluminum and Stainless Stee High Pressure Science and Technology (edited by Timmerhaus K.D. and M.S. Barber), Plenum, New York, pp. 889–894

    Google Scholar 

  • Raikes S.A., and Ahrens T.J. (1979b), Post-Shock Temperatures of Minerals, Geophys. J. Roy. Astronom. Soc. 58, 717–748

    Article  Google Scholar 

  • Rice M.H., and Walsh J.M. (1957), Equation of State of Water to 250 Kilobars, J. Chem. Phys. 26, 824–830

    Article  ADS  Google Scholar 

  • Roddy D.J., Pepin R.O., and Merrill R.B. (1977), Impact and Explosion Cratering, Pergamon, Oxford, pp. 1–1301

    Google Scholar 

  • Rosenberg Z., and Partom Y. (1984), Direct Measurement of Temperature in Shock Loaded Polymethlmetacrylate with Very Thin Copper Thermisters, in Shock Waves in Condensed Matter—1983 (edited by Asay J.R. et al.), Elsevier, Amsterdam, pp. 251

    Google Scholar 

  • Ruoff A.L. (1967), Linear Shock-Velocity-Particle-Velocity Relationship, J. Appl. Phys. 38, 4976–4980

    Article  ADS  Google Scholar 

  • Sharpton V.L., and Ward P.D. (Eds.) (1990), Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, pp. 1–631, Special Paper 247, The Geological Society of America, Boulder, Colorado, 1990

    Google Scholar 

  • Silver L.T., and Schultz P. (Eds.) Geological Implications of Impacts of Large Asteroids and Comets on the Earth, pp. 1–528, Special Paper 190, The Geological Society of America, Boulder, Colorado, 1982

    Google Scholar 

  • Simakov G.V., and Trunin R.F. (1990), Compression of Super-Porous Silica in Shock Waves, Izv. Earth Phys. (Russian), 11, 72–77

    Google Scholar 

  • Stöffler D. (1972), Deformation and Transformation of Rock-Forming Minerals by Natural and Experimental Shock Processes, I, Fortschr. Miner. 49, 50–113

    Google Scholar 

  • Stöffler D. (1974), Deformation and Transformation of Rock-Forming Minerals by Natural and Experimental Shock Processes. II. Physical Properties of Shocked Minerals. Fortschr. Miner. 51, 256–289

    Google Scholar 

  • Svendsen B., and Ahrens T.J. (1987), Shock-Induced Temperatures of MgO, Geophys. J. Roy. Astronom. Soc. 91, 667–691

    Article  Google Scholar 

  • Tan H., and Ahrens T.J. (1990), Shock Temperature Measurements for Metals, High Pressure Res. 2, 159–182

    Article  ADS  Google Scholar 

  • Touloukian Y.S., and DeWitt D.P. (1972), Thermal Radiative Properties of Non-metallic Solids, in Thermophysical Properties of Matter, Plenum, New York, pp. 3a–48a

    Google Scholar 

  • Trunin R.F., Simakov G.V., and Podurets M.A. (1971), Compression of Porous Quartz by Strong Shock Waves, Izv. Earth Phys. English Transl., #2, 102–106

    Google Scholar 

  • Wackerle J. (1962), Shock-Wave Compression of Quartz, J. Appl. Phys. 33, 922–937

    Article  ADS  Google Scholar 

  • Walsh J.M., and Christian R.H. (1955), Equation of State of Metals from Shock Wave Measurements, Phys. Rev. 97, 1544–1556

    Article  ADS  Google Scholar 

  • Watt J.P., and Ahrens T.J. (1983), Shock Compression of Single-Crystal Forsterite, J. Geophys. Res. 88, 9500–9512

    Article  ADS  Google Scholar 

  • Williams Q., Jeanloz R, Bass J., Svendsen B., and Ahrens T.J. (1987), The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth’s Center, Science 236, 181–182

    Article  ADS  Google Scholar 

  • Yakushev V.V. (1978), Electrical Measurements in a Dynamic Experiment, Fiz. Goreniya Vzryva 14, 3–19

    Google Scholar 

  • Zaitzev V.M., Pokhil P.F., and Shvedov K.K. (1960), An Electromagnetic Method for Measurement of the Velocity of Explosion Products, Dokl. Akad. Nauk. SSSR 132, 1339–1340

    Google Scholar 

  • Zel’dovich Y.G., and Kompaneets A.S. (1960), Theory of Detonation, Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahrens, T.J. (1993). Equation of State. In: Asay, J.R., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0911-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0911-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6943-4

  • Online ISBN: 978-1-4612-0911-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics