Skip to main content

Experimental and Diagnostic Techniques

  • Chapter
High-Pressure Shock Compression of Solids

Abstract

Investigations in the field of shock compression of solid materials were originally performed for military purposes. Specimens such as armor were subjected to either projectile impact or explosive detonation, and the severity and character of the resulting damage constituted the experimental data (see, e.g., Helie, 1840). Investigations of this type continue today, and although they certainly have their place, they are now considered more as engineering experiments than scientific research, inasmuch as they do little to illuminate the basic physics and material properties which determine the results of shock-compression events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Sayed A.S., RJ. Clifton, and L. Herman (1976), rExp. Mech. 16, 127–132

    Article  Google Scholar 

  • Al’tshuler L.V. (1965), Soviet Phys. Uspekhi 8, 52–91

    Article  ADS  Google Scholar 

  • Amery B.T. (1976), 6th Symposium on Detonation AC-R-221, Office of Naval Research, Department of the Navy, Arlington, VA, pp. 673–681

    Google Scholar 

  • Ang J.A., B.D. Hansche, C.H. Konrad, and W.C. Sweatt (1991), Pulsed Holography For Hypervelocity Impact Diagnostics, Sandia National Laboratories, SAND91-2871C

    Google Scholar 

  • Asay J.R. and G.I. Kerley (1986), Internat. J. Impact Engrg. 5, 69

    Article  Google Scholar 

  • Asay J.R. (1981). The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility, Sandia National Laboratories Report SAND81-1901

    Google Scholar 

  • Asay J.R., L.C. Chhabildas, and L.M. Barker (1985). Projectile and Impactor Designs for Plate-Impact Experiments, Sandia National Laboratories Report SAND85-2009

    Google Scholar 

  • Asay J.R., L.C. Chhabildas, T.G. Trucano, and G.I. Kerley (1986), High Pressure Strength of Shocked Aluminum, in Shock Waves in Condensed Matter (edited by Y.M. Gupta), Plenum, New York, pp. 145–149

    Chapter  Google Scholar 

  • Baker L.M. (1985). Balancing Projectiles for Light Gas Guns, Sandia National Laboratories Report SAND85-2012

    Google Scholar 

  • Barker L.M. and R.E. Hollenbach (1970), J. Appl. Phys. 41, 4208–4226

    Article  ADS  Google Scholar 

  • Barker L.M. and R.E. Hollenbach (1972), J. Appl. Phys. 43, 4669–4675

    Article  ADS  Google Scholar 

  • Barker L.M. and K.W. Schuler (1974), J. Appl. Phys. 45, 3692–3693

    Article  ADS  Google Scholar 

  • Barker L.M. (1984), Shock Waves in Condensed Matter (edited by J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science, New York, pp. 217–224

    Google Scholar 

  • Barker L.M., T.G. Trucano, and A.R. Susoeff (1989), IEEE Trans. Magnetics 25, No. 1, 83–87.

    Article  ADS  Google Scholar 

  • Barsis E., E. Williams, and C. Skoog (1970), J. Appl. Phys. 41, 5155–5162

    Article  ADS  Google Scholar 

  • Bauer F. (1982), Behavior of Ferroelectric Ceramics and PVF2 Polymers Under Shock Loading, in Shock Waves in Condensed Matter—1981 (edited by W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, pp. 251–267

    Google Scholar 

  • Bauer F. (1983), Ferroelectrics 49, 231–240

    Article  Google Scholar 

  • Bauer F. (1984), Piezoelectric and Electric Properties of PVF2 Polymers Under Shock Wave Action: Application to Shock Transducers, in Shock Waves in Condensed Matter—1983 (edited by J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science, New York, pp. 225–228

    Google Scholar 

  • Benjamin R.F., F.J. Mayer, and R.L. Maynard (1984), Microshell-Tipped Optical Fibers as Sensors of High-Pressure Pulses in Adverse Environments, in Fiber Optics in Adverse Environments 11, Proc. SPIE, 506 (edited by R.A. Greenwell), pp. 116–121

    Google Scholar 

  • Chhabildas L.C. and J.R. Asay (1979), J. Appl. Phys. 50, 2749–2756

    Article  ADS  Google Scholar 

  • Chhabildas L.C., H.J. Sutherland, and J.R. Asay (1979), J. Appl. Phys. 50, 5196–5201

    Article  ADS  Google Scholar 

  • Chhabildas L.C. and J.W. Swegle (1980), J. Appl. Phys. 51, 4799–4801

    Article  ADS  Google Scholar 

  • Chhabildas L.C. and D.E. Grady (1984), Shock Loading Behavior of Fused Quartz, in Shock Waves in Condensed Matter—1983(edited by J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science, New York, pp. 175–178

    Google Scholar 

  • Chhabildas L.C. (1987), Internat. J. Impact Engrg, 5, 205–220

    Article  Google Scholar 

  • Chhabildas L.C. and L.M. Barker (1988), Dynamic Quasi-Isentropic Compression of Tungsten, in Shock Waves in Condensed Matter (edited by S.C. Schmidt and N.C. Holmes), Elsevier Science, New York, pp. 111–114

    Google Scholar 

  • Chhabildas L.C. and R.A. Graham (1989), Techniques and Theory of Stress Measurements for Shock Applications, AMD-83 (edited by R. Stout, F. Norwood, and M. Fourney), ASME, p. 1

    Google Scholar 

  • Chhabildas L.C., L.M. Barker, J.R. Asay, T.G. Trucano, and G.I. Kerley (1991), Sandia’s New Hypervelocity Launcher/HVL, Sandia National Laboratories Report, SAND91-0657

    Google Scholar 

  • Chhabildas L.C., L.M. Barker, J.R. Asay, T.G. Trucano, G.I. Kerley, and J.E. Dunn (1992), Launch Capabilities to over 10 km/s, in Shock Waves in Condensed Matter—1991 (edited by S.C Schmidt, J. Forbes, R. Dick), Elsevier Science, New York

    Google Scholar 

  • Chhabildas L.C. (1992), Hypervelocity Launch Capabilities to over 10 km/s, in Recent Trends in High Pressure Research (edited by A.K. Singh), Oxford Publications, New Delhi, pp. 739–746

    Google Scholar 

  • Chhabildas L.C., J.E. Dunn, W.D. Reinhart, and J.M. Miller (1993), An Improved Technique to Accelerate Flier Plates to over 12 km/s, Internat. J. Impact Engrg. (to be published)

    Google Scholar 

  • Curtis J.S. (1962), An Accelerated Reservior Light-Gas Gun, National Aeronautics and Space Administration, TND-1144

    Google Scholar 

  • Crozier W.D. and W. Hume (1957), J. Appl Phys. 28, 892–898

    Article  ADS  Google Scholar 

  • Davison L.W. and R.A. Graham (1979), Phys. Rep. 55, 357–379

    Article  Google Scholar 

  • Deal W.E., Jr. (1962), in Modern Very High Pressure Techniques (edited by R.H. Wentorf), Butterworths, London, pp. 200–227

    Google Scholar 

  • DeCarli P.S., D.C Erlich, L.B. Hall, R.G. Bly, A.L. Whitson, D.D. Keough, and D. Curran (1976), Stress-Gauge System for the Megabar (100 GPa) Range. Defense Nuclear Agency Report No. DNA 4066F, unpublished

    Google Scholar 

  • Durand M. (1984), Use of Optical Fibers for Velocity Measurement by Laser Doppler Interferometry with a Fabry–Perot Interferometer. In High Speed Photography and Photonics, Proc. SPIE, 491 (edited by M. Andre and M. Hugenschmidt), pp. 650–656

    Google Scholar 

  • Durand M., P. Laharrague, P. Lalle, A. Lebihan, J. Morvan, and H. Pujois (1977), Rev. Sci. Instrum. 48, 275–278

    Article  ADS  Google Scholar 

  • Duvall G.E. and R.A. raham (1977), Rev. Modern Phys. 49, 523

    Article  ADS  Google Scholar 

  • Fowles G.R. (1972), Experimental Technique and Instrumentation, in Dynamic Response of Materials to Intense Impulsive Loading (edited by P.C Chou and A.K. Hopkins), pp. 405–480

    Google Scholar 

  • Fowles G.R., C Leung, R. Rabie, and J. Shaner (1979), Acceleration of Flat Plates by Multiple Staging, in High Pressure Science and Technology (edited by K.D. Timmerhause and M.S. Barber), Plenum, New York, pp. 911–919

    Google Scholar 

  • Gidon S., G. Garcin, and H. Behar (1984), Doppler Laser Interferometry with Light Transmission by Two Optical Fibers. In High Speed Photography and Photonics, Proc. SPIE 4, 91 (edited by M. Andre and M. Hugenschmidt), pp. 894–898

    Google Scholar 

  • Grady D.E. (1977), in High-Pressure Research, Applications in Geophysics (edited by S. Akimoto and M.H. Mangnani) Academic Press, New York, pp. 389–438

    Google Scholar 

  • Grady D.E. (1985), Sandia National Laboratories, private communication

    Google Scholar 

  • Grady D.E. (1986), High-Pressure Release-Wave Measurements and Phase Transformation in CaC03, in Shock Waves in Condensed Matter (edited by Y.M. Gupta), Plenum, New York, pp. 589–594

    Chapter  Google Scholar 

  • Grady D.E. and M.J. Ginsberg (1977), J. Appl. Phys. 48, 2179–2181

    Article  ADS  Google Scholar 

  • Grady D.E., W.J. Murri, and G.R. Fowles (1974), J. Geophys. Res. 79, 332–338

    Article  ADS  Google Scholar 

  • Graham R.A. and J.R. Asay (1978), High Temp.–High Press. 10, 355–390

    Google Scholar 

  • Graham R.A. and L.M. Lee (1986), Sandia National Laboratories and Ktech Corporation, private communication

    Google Scholar 

  • Graham R.A. and R.P. Reed (1978), Selected Papers on Piezoelectricity and Impulsive Pressure Measurement. Sandia National Laboratories Report No. SAND78-1911

    Google Scholar 

  • Gray G.T. III, Chapter 6 of this book. (1993)

    Google Scholar 

  • Gupta S.C. and Y.M. Gupta (1984), Response of Ytterbium Foils Oriented Parallel and Perpendicular to the Shock Front, in Shock Waves in Condensed Matter— 1983 (edited by J.R. Asay, R.A. Graham, and G.K. Straub) Elsevier Science, New York, pp. 237–238

    Google Scholar 

  • Gupta Y.M, D.D. Keough, D.F. Walter, K.D. Dao, D. Henley, and A. Urweider (1980), Rev. Sci. Instrum. 51, 183–194

    Article  ADS  Google Scholar 

  • Gupta Y.M. and W.J. Murri (1982), Piezoelectric Shear Stress Gauge for Dynamic Loading, in Shock Waves in Condensed Matter—1981 (edited by W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, pp. 525–529

    Google Scholar 

  • Gupta Y.M. (1983), J. Appl. Phys. 54, 6256–6266

    Article  ADS  Google Scholar 

  • Hawke R.S, A.R. Susoeff, J.R. Asay, J.K. Balk, C.A. Hall, C.H. Konrad, R.J. Hickman, and J.L. Saure (1989), Starfire: Hypervelocity Railgun Development for High-Velocity Hydrogen, IEEE Trans. Magnetics 25, No. 1, 223–227

    Article  ADS  Google Scholar 

  • Helie F. (1840), Traite de Balistique Experimentale, Dumaine, Paris

    Google Scholar 

  • Hemsing W.F. (1979), Rev. Sci. Instrum. 50, 73–78

    Article  ADS  Google Scholar 

  • Hough G.R, D.M. Gustafson, and W.R. Thursby (1990), Enhanced Holographic Recording Capabilities for Dynamic Applications, in Ultrahigh-and High-Speed Photography, Videography, Photonics, and Velocimetry’ 90, SPIE, Vol. 1346, pp. 194–199

    ADS  Google Scholar 

  • Isbell W.M. (1987), Historical Overview of Hypervelocity Impact Diagnostic Technology, Internat. J. Impact Engrg., 5, pp. 389–410

    Article  Google Scholar 

  • Johnson P.M. and T.J. Burgess (1968), Rev. Sci. Instrum. 39, 1100–1103

    Article  ADS  Google Scholar 

  • Kim K.S., R.J. Clifton, and P. Kumar (1977), J. Appl. Phys. 41, 3508–3515

    Google Scholar 

  • Koller L.R. and G.R. Fowles (1979), Simultaneous Generation and Measurement of Longitudinal and Shear Waves in Shock Compressed Media, in High Pressure Science and Technology, vol. 2, (edited by K.D. Timmerhaus and M.S. Barber), Plenum, New York, pp. 927–934

    Google Scholar 

  • Kormer S.B., M.V. Sinitsyn, G.A. Kirillov, and V.D. Urlin (1965), Soviet Phys. JETP 21, 689–700

    ADS  Google Scholar 

  • Lee L.M., D.G. Fogelson, and W.D. Williams (1984), Dynamic Stress Transducers Qualification, in Shock Waves In Condensed Matter—1983 (edited by J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science, New York, pp. 229–232

    Google Scholar 

  • Lyzenga G.A. and T.J. Ahrens (1979), Rev. Sci. Instrum. 50, 1421–1424

    Article  ADS  Google Scholar 

  • McQueen R.G. and S.P. Marsh (1960), J. Appl. Phys. 31, 1253–1269

    Article  ADS  Google Scholar 

  • McQueen R.G., S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter (1970), The Equation of State of Solids from Shock Wave Studies, inHigh Velocity Impact Phenomena (edited by R. Kinslow), Academic Press, New York, pp. 293–299

    Google Scholar 

  • McQueen R.G. and J.N. Fritz (1982), Some Techniques and Results from High-Pressure Shock-Wave Experiments Utilizing the Radiation from Shocked Transparent Materials, in Shock Waves in Condensed Matter—1981 (edited by W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, 193–207

    Google Scholar 

  • Murri W.J., D.E. Grady, and K.D. Mahrer (1975), Equation of State of Rocks. Stanford Research Institute Final Report, Menlo Park, CA (unpublished)

    Google Scholar 

  • Osher J.E, H.H. Chau, G.R. Gathers, R.S. Lee, G.W. Pomykal, and R.C. Weingart (1988), Shock-Wave Studies Using Plastic Flyers Driven by an Electric Gun for Hypervelocity Impact on Selected Materials, in Shock Waves in Condensed Matter 1987 (edited by S.C. Schmidt and N.C. Holmes), Elsevier Science, New York, pp. 673–676

    Google Scholar 

  • Partom Y., D. Yaziv, and Z. Rosenberg (1981), J. Appl. Phys. 52, 4610–4616

    Article  ADS  Google Scholar 

  • Proceeding of the 4th Symposium on Electromagnetic Launch Technology (1989), in IEEE Trans. Magnetics 25, No. 1 (123 papers)

    Google Scholar 

  • Rice M.H., R.G. McQueen, and J.M. Walsh (1958), in Solid State Physics, Vol. 6 (edited by F. Seitz and D. Turnbull), Academic Press, New York, 1965, pp. 1–63

    Google Scholar 

  • Rohde R.W., B.M. Butcher, D.R. Holland, and C.H. Karnes (1973), Metallurgical Effects At High Strain Rates, Plenum, New York

    Book  Google Scholar 

  • Setchell R.E. (1981), Combust. Flame 43, 255–264

    Article  Google Scholar 

  • Shahinpoor M., H.S. Lausen, J.L. Wise, J.R. Asay, C.H. Konrad, and R.D. Harday (1985), Ballistics Computer Code Manupulation for Optimal Design and Operation of Two-Stage Light Gas Guns, SNL—Solid Dynamics Department, Quarterly Report, October 1985

    Google Scholar 

  • Shahinpoor M., J.R. Asay, W.R. Dixon, and R.S. Hawke (1987), Effects of Barrel Joints on Hypervelocity Projectiles, in Shock Waves in Condensed Matter (edited by S.C. Schmidt and N.C. Holmes), Elsevier Science, New York, 1988

    Google Scholar 

  • Shahinpoor M., J.R. Asay, C.H. Konrad, and C.A. Hall (1989), Use of a Two-Stage Light-Gas Gun as an Injector for Electromagnetic Railguns, IEEE Trans. Magnetics 25, No. 1, 514–519

    Article  ADS  Google Scholar 

  • Shahinpoor M. and R.S. Hawke (1989), Analytic Solutions to Dynamic Equations of Plasma Armature Railguns, IEEE Trans. Magnetics 25, No. 1, 508–513

    Article  ADS  Google Scholar 

  • Sugiura H., K. Kondo, and A. Sawaoka (1980). Rev. Sci. Instrum. 51, 750–752

    Article  ADS  Google Scholar 

  • Sugiura H., K. Kondo, and A. Sawaoka (1981). J. Appl. Phys. 52, 3375–3382

    Article  ADS  Google Scholar 

  • Wise J.L. and L.C. Chhabildas (1986), Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials, in Shock Waves in Condensed Matter (edited by Y.M. Gupta), Plenum, New York, pp. 441–454

    Chapter  Google Scholar 

  • Young C. and O. Dubugnon (1977), Exp. Mech. 17, 470–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barker, L.M., Shahinpoor, M., Chhabildas, L.C. (1993). Experimental and Diagnostic Techniques. In: Asay, J.R., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0911-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0911-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6943-4

  • Online ISBN: 978-1-4612-0911-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics