Advertisement

The Special Relativistic Classical Field Theory

  • Anadijiban Das
Chapter
  • 637 Downloads
Part of the Universitext book series (UTX)

Abstract

We shall define the Lagrangian function for a relativistic classical field. Let \(\bar D \subset \mathbb{R}^4 \) be a bounded region corresponding to a region \(\bar U\) in space-time M4. Let F: \(\bar D \to \mathbb{R}^\rho \) be a twice differentiable function, i.e., \(F \in \ell ^2 (\bar D;\mathbb{R}^\rho )\) (see Figure 24).

Keywords

Dirac Equation Gauge Field Lagrangian Function Differential Identity Dirac Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Choquet-Bruhat, C. Dewitt-Morette, and M. Dillard-Bleick, Analysis, manifolds, and physics, North-Holland Publ. Co., Amsterdam, 1977. [pp. 154, 168, 174]zbMATHGoogle Scholar
  2. 2.
    E. M. Corson, Introduction to tensors, spinors, and relativistic wave-equations, Blackie and Son Ltd., London, 1955. [pp. 72, 176, 179, 213]Google Scholar
  3. 3.
    K. Huang, Quarks, leptons, and gauge fields, World Scientific Publ. Co., Singapore, 1982. [pp. 204, 227,231]Google Scholar
  4. 4.
    D. Lovelock and H. Rund, Tensors, differential forms, and variational principles, John Wiley and Sons, New York, 1975. [p. 176]zbMATHGoogle Scholar
  5. 5.
    Y. Takahashi, An introduction of field quantization, Pergamon Press Ltd., Toronto, 1969. [pp. 183, 186, 195, 213, 217]Google Scholar
  6. 6.
    P. B. Yasskin, Phys. Rev. D 12 (1975), 2212–2217.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Anadijiban Das
    • 1
  1. 1.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Personalised recommendations